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Abstract—In radar systems, detection performance depends on assumed target and clutter statistical distributions. The probability of detection is shown to be sensitive to the degree of estimation accuracy of clutter levels. In this work, the performances of non-coherent logt-CFAR, zlog(z)-CFAR and Bayesian-CFAR detectors are investigated using both simulated and real data. Three clutter disturbances are considered named log-normal, Weibull and Pareto type II. Based on simulated data, existing CFAR algorithms provide fully CFAR decision rules. From IPIX real data, the dependence of the false alarm probability associated to each detector is studied. With different range resolutions, it is shown that the Bayesian-CFAR algorithm exhibits a small deviation of the false alarm probability.
Index Terms—Radar, Sea-clutter, logt-CFAR, zlog(z)-CFAR, Pareto type II model, Bayesian-CFAR.
I. Introduction 

The detection performance of maritime radars is restricted by the unwanted sea-echo or clutter [1]. Radar clutter modeling is a serious research issue in the field of targets detection and track applications. Although the number of these target-like data is small, they may cause false alarm and perturb the target detection. Reliable radar signal processing algorithms including CFAR (constant false alarm rate) detectors are constructed on the basis of the best selection of background clutter model [2]. Development of radar systems encourages researchers to use theoretical heavy tailed probability density functions (pdf) that are found in the open literature of statistics and mathematics. Nowadays, the Rayleigh distribution becomes a special case of some sea reverberation data, because there is a restriction of the application of a central limit theorem. 
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The two parameters log-normal, Weibull, K and Pareto laws have been offered as models for the amplitude of both land and sea-clutter [2-4]. More recently, compound distribution with trimodal discrete texture law has been added to yield a fairly good description of empirical data [5]. Adaptive CFAR detectors are developed to overcome the increase of the false alarm number due to the use of conventional detectors with fixed thresholds. Moreover, if wrong clutter model or inappropriate clutter level estimator is used, such false alarm problem can not be resolved [6]. In reality, the phenomenon complexity of radiation scattered from turbulent or rough surface and the lack of explicit solutions of underling algorithms have also a negative impact on the development of optimal CFAR detectors.

In terms of sea-clutter model type, several authors have considered different decision rules that are independent of true clutter parameters [7-9]. From [3], the logt-CFAR maintains the CFAR property if independent radar returns follow log-normal or Weibull population. Recently, Gouri et al proposed in [7] the zlog(z)-CFAR detector for Weibull background. This procedure provides similar results with respect to the well known ML-CFAR algorithm given in [4], but with a small computation time. Some CFAR detectors operating in homogeneous and heterogeneous Pareto type II clutter are presented when the shape parameter or the scale parameter of the Pareto type II model is known a priori [8]. If these parameters are unknown, an alternative procedure based upon the Bayesian approach is introduced in which a modified decision rule is obtained in integral form [9].  
In summary, we observe that the previous work based on the Bayesian framework did not show performances comparisons between the Bayesian-CFAR detector with their corresponding logt-CFAR and zlog(z)-CFAR detectors using real data. In this work, the clutter is assumed to be log-normal, Weibull or Pareto type II distributed. The dependence of the false alarm probability is presented. From simulated data, CFAR detectors provide fully CFAR decision rules. From IPIX (Intelligent Pixel processing X-band) real data with different range resolutions, it is shown that the Bayesian-CFAR algorithm exhibits a small deviation of the false alarm probability.
The paper is organized as follows. Section 2 summarizes three statistical distributions characterizing radar sea echoes. In Section 3, full CFAR detectors related to the log-normal, Weibull and Pareto type II distributions are given. After giving partial CFAR detectors in Pareto type II clutter in Section 4, detection performances of underling CFAR algorithms are then compared. Finally, main conclusions are outlined in Section 5.
II. SEA-CLUTTER MODELS
In modern high resolution radar, the clutter (sea-clutter, weather clutter or land clutter) returns may not follow the Rayleigh model, since the amplitude distribution develops a “larger” tail that may increase the false alarm rate. As an alternative, compound Gaussian distributions have been studied to fit sea radar clutter [7]. In the following, three popular distributions that are considered for maritime targets CFAR detection are presented. 
A. Log-normal model 

The log-normal distribution best describes land clutter at low grazing angles. It also fits sea-clutter in the plateau region [3, 10]. The pdf and the cdf (cumulative distributed fubction) of the amplitude X are given by
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where 
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 and 
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are the median and the standard deviation of the random variable ln(x) respectively. If the intensity variable Y= X2 is considered at the output of the square law detector, the corresponding pdf and cdf of (1) have the forms
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B. Weibull model
The Weibull pdf is used to model sea-clutter at low grazing angles (less than five degrees) for propagation frequencies vary between 1 and 10GHz. It is determined by the slope parameter a and a median scatter coefficient
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s

, and is given by [4, 10] for the amplitude domain as
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where c=1/a is the shape parameter and 
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is the scale parameter. In the intensity domain, (3) is written as
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C. Pareto type II model 

The Pareto disturbance is considered as a possible model to analyze data sets with very heavy tail, such as sea-clutter measurements that have heavy tail. The Pareto type II pdf is obtained if the texture component follows the inverse gamma law [8, 9]. The latter describes the variations of the local reflected power due to the tilting of the illuminated area. The statistics of a Pareto distributed random variable X have been described in [8] by the following functions
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When the power of the clutter variable is taken into account, (5) have the form
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where 
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 is the shape parameter and 
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 the scale parameter. For high resolution sea clutters, the shape parameter 
[image: image13.wmf]a

 is typically in the range 2.1 ≤ 
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 ≤ ∞, where 
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close to 2.1 represents a very spiky clutter and 
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corresponds to thermal noise (Rayleigh clutter). In order to illustrate the efficiency of the Pareto type II model against Weibull and lognormal distributions, we plotted different curves of corresponding pdfs and cdfs as shown in Figures. 1 and 2. We observe that the fitting of IPIX real data with a high resolution of 3m is well established by the use of the Pareto type II model. The IPIX database is detailed in more research papers [12].
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Figure. 1 Modeling comparisons between Weibull, lognormal and Pareto type II distribution against real dat with HH polarization, resolution of 3m and 3rd range cell.
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Figure. 2 Modeling comparisons between Weibull, lognormal and Pareto type II distribution against real dat with VV polarization, resolution of 3m and 17th range cell.

III. RELATED CFAR DETECTORS
Radar target detection is usually modeled by binary hypothesis test. The observed signal y under the two hypotheses, H1 for target present and H0 for target absent (clutter only), is given by 
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where y, s and c are complex numbers. 

A. Logt-CFAR detector
The decision rule associated to this detection procedure is independent of true values of the clutter model parameters and is suitable for log-normal or Weibull background [3]. The test is
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where
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 is the magnitude of the cell under test (CUT), 
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 is the threshold multiplier, 
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ˆ

and
[image: image26.wmf]s

ˆ

 are the estimated mean and standard deviation of the random variable log(X).
B. zlog(z)-CFAR detector
The forthcoming adaptive threshold is also given as a function of estimated shape and scale parameters of Weibull clutter. The coefficient 
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 is used to fix the desired value of the false alarm probability, PFA
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Where X0 is the cell under test.

From [7], 
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ˆ

 and 
[image: image30.wmf]b

ˆ

are obtained by a flexible approach based on the interpolation method
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where N is the size of the CRP (clutter range profile) and 
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 the Psi (digamma) function.
C. Bayesian-CFAR detector
The Bayesian method is one of the best techniques for obtaining decision rules with a CFAR property. This method provides the flexibility of extracting the posterior decision rule from its respective posterior distribution. It is considered here for the case in which both Pareto type II parameters in (6) are unknown. According to [9], the Bayesian based CFAR detector is constructed by means of steps below:
Step 1: Calculate the natural logarithm of (6).

Step 2: Determine the Fisher information matrix.

Step 3: Calculate the Jeffreys prior distribution.

Step 4: Obtain the joint density of the CRP.

Step 5: Calculate the joint density of the Pareto distributional parameters, conditioned on the CRP.

       Step 6: Calculate the Bayes predictive density.

Step 7: Calculate the PFA expression as a function of the threshold 
[image: image33.wmf]t

and samples, Xi, i=1, …N.
To compute the PFA, triple integrals are considered [9]. Hence
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where
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 is the density of the CUT conditioned on the clutter parameters,
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 is the posterior density of the parameters 
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 and 
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conditioned on the CRP and  
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 is the prior distributions of the clutter parameters. From [9], it is demonstrated that the PFA is independent of 
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Consequently, one can conclude that the Bayesian test is to reject H0 if the following test statistic is negative [9]. From (12), 
[image: image43.wmf]t

 is replaced by X0 and he threshold is obtained numerically as
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The decision rule can also be written in the form
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IV. DETECTION COMPARISONS
In this section, we conduct firstly several Monte-Carlo simulations as well as IPIX real data in order to evaluate the detection performance and the false alarm properties of CFAR detectors given in [3, 4, 7-9]. For instance, the target of interest fluctuates according to Swerling 1 model. For comparison purposes, three partial CFAR detectors are considered for simulated data [8].

A. Partial GM-CFAR detector (known
[image: image46.wmf]b

)
Under the assumption of iid (independent and identically distributed) Pareto type II distributed samples, the decision rule of the GM-CFAR (geometric mean- CFAR) detector is given in terms of 
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where
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B. Partial OS-CFAR detector (known
[image: image51.wmf]b

)
In the presence of outliers, the output of the reference window are sorted in increasing order. The kth order statistic X(k) is chosen to estimate the clutter power. From [8], one concludes that the resulting OS-CFAR (order statistic-CFAR) detector is also dependent of 
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Here, the equivalent PFA formula is
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Where 
[image: image55.wmf]t

is computed numerically.
C. Partial OS-CFAR detector (known
[image: image56.wmf]a

)

In this case, the decision rule for known 
[image: image57.wmf]a

is given by [8]
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where 
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is determined via numerical inversion of Pfa [8] 
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D. Ideal detector (known
[image: image61.wmf]a

and
[image: image62.wmf]b

 )

In order to provide an upper bound on detector performance, a linear detector with fixed threshold is considered
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(18) is just obtained from the inversion formula of 1-cdf from (6). Hence
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 EMBED Equation.3  [image: image66.wmf](
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E. Detection using simulated data
In this subsection, simulated Pareto type II clutter is considered to examine CFAR detectors given by (15), (17), (19) and (21). To do this, N+1 samples (clutter range profile) are generated by means of the following Matlab function.
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In the forthcoming outcomes, detectors (17) and (19) are denoted by OS-CFAR1 and OS-CFAR2 respectively. Figure. 3 depicts PD values against the SCR (signal-to-clutter ratio) for N = 16, k=3N/4,
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. As expected, the Bayesian-CFAR detector exhibits the lowest detection performance, because the two parameters are unknown which provide an error for clutter level estimates. If N = 32, the performances of all detectors are increased and the Bayesian-CFAR detector has always minimum PD values as shown in Figure. 4. To illustrate the performance comparisons against interfering targets situation, we insert in leading and lagging windows two secondary targets with ICR = 5dB (Interfering-to-clutter ratio) for N = 16 as presented in Figure. 5. The degradation of GM-CFAR and Bayesian-CFAR detectors is remarkable. If two strong interfering targets with ICR = 10dB are injected in the CRP which creates non-homogeneous clutter, the Bayesian-CFAR detector offers also worst results as shown in Figure. 6. These attenuations in PD values are due to the estimation errors of Pareto clutter power in the CUT from non-identically distributed samples.
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Figure. 3 PD versus SCR of CFAR algorithms in homogeneous Pareto type II clutter with N = 16, k=3N/4, PFA = 10-3,
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F. Detection using real data

The IPIX real data is now used to illustrate the PFA values in terms of the threshold scale factor, range resolutions and antennas polarizations. IPIX is experimental X-band search radar, capable of dual polarized and frequency agile operation. We focus our analysis on the datasets 84, 85 and 86 which correspond to the range resolutions 30m, 15m and 3m respectively. Characteristic features of the IPIX radar are given in [11]. In this part, the magnitude (envelop) of real data is used as the input of each detector. 
From the open literature, the Bayesian CFAR algorithm was only derived for non-coherent CFAR detection in the presence of homogeneous Pareto type II clutter with unknown parameters. The ML-CFAR, zlogz-CFAR and logt-CFAR cited above were previously used to detect targets when a homogenous clutter is Weibull or lognormal distributed. Other detectors were proposed like WH-CFAR, IE-CFAR, ect but thy operate in the presence of interfering targets. We recall that the purpose of this work is limited to compare existing detectors for homogeneous sea-clutter.

For cases of HH polarization, range resolutions of 3m, 15m and 30m with a linear detector, Figure. 7 presents three curves of PFA values against the scale factor, 
[image: image75.wmf]t

. Here, thresholds given by (8) and (9) are used. Clearly, the CFAR property is not maintained in terms of range resolutions. This implies that log-normal and Weibull distributions have not the ability to fit IPIX data for different range resolutions. If the Bayesian-CFAR is applied to these scenarios of the data, resulting PFA values are comparable as depicted in Figure. 8. Thus, one concludes that the Pareto type II is well suited for IPIX data. Now we change the antennas polarization to be VV. Figure. 9 highlights also the deviation of the PFA if detectors (8) and (9) are used. In this study, Figure. 10 shows also the best approximation of the PFA values within the use of Bayesian decision rule given by (14).  
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Figure. 4 PD versus SCR of CFAR algorithms in Pareto type II clutter with N = 32, k = 3N/4, PFA = 10-3,
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Figure. 5 PD versus SCR of CFAR algorithms in Pareto type II clutter and 2 interfering targets with ICR = 5dB, N = 16, k=3N/4, 
PFA = 10-3,
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Figure. 6 PD versus SCR of CFAR algorithms in heterogeneous Pareto type II clutter and 2 interfering targets with ICR = 10dB, N = 16, k=3N/4, 
PFA = 10-3,
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Figure. 7 PFA  versus scale factor 
[image: image86.wmf]t

of  CFAR algorithms using IPIX data for HH polarization and N = 32
(a) logt-CFAR (log-normal or Weibull clutter case)

(b) zlogz-CFAR (Weibull clutter case)
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Figure. 8 PFA  versus detection threshold  
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of  Bayesian-CFAR detector (Pareto type II clutter case) 
using IPIX data for HH polarization and N = 32 
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Figure. 9 PFA  versus scale factor 
[image: image90.wmf]t

of  CFAR algorithms using IPIX data for VV polarization and N = 32
(a) logt-CFAR (log-normal or Weibull clutter case)

(b) zlogz-CFAR (Weibull clutter case)
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Figure. 10 PFA versus detection threshold 
[image: image92.wmf]t

of Bayesian-CFAR detector (Pareto type II clutter case) 

using IPIX data for VV polarization and N = 32
For HH and VV polarizations and a range resolution of 3m, the CFAR properties of zlogz-CFAR and logt-CFAR detectors are also checked as shown in Figures. 11 and 12. In this case, a data matrix of samples 10000x33 is used to estimate the PFA in terms of 
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. It is remarkable in these results that the PFA curves are not converged at PFA = 10-3. This implies that such data are not fitted precisely by the Weibull or the lognormal disturbance. 
In order to depict the PD values, the mean of the scale factor of each detector is obtained to be 
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dB for the case of zlogz-CFAR algorithm and 
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for the case of logt-CFAR algorithm. As shown in Figure. 13, the logt-CFAR provides the best PD results if HH polarization and a resolution of 3m are considered. When the VV polarization and a resolution of 3m are taken into account as shown in Figure. 14, the PD values are almost overlapped. In this study, the logt-CFAR detector is preferred than the zloz-CFAR detector.
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Figure. 11 PFA  versus scale factor 
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of  zlogz-CFAR algorithm for a resolution of 3m , HH and VV polarization.
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Figure. 12 PFA  versus scale factor 
[image: image99.wmf]t

of  logt-CFAR algorithm for a resolution of 3m , HH and VV polarization.
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Figure. 13 PD versus SCR of zlogz-CFAR and logt-CFAR algorithms using real data with HH polarization and 3m
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Figure. 14 PD versus SCR of zlogz-CFAR and logt-CFAR algorithms using real data with VV polarization and 3m.
For the case of a square law detector, the PFA values related to the Bayesian-CFAR algorithm are computed for HH and VV polarizations and a resolution of 3m. It noticed in Figure.15 that the PFA curves are approximated, but the fitting error at PFA = 10-3 remains remarkable. The  scale factor in this case is 
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dB. Figure. 16 sketches the PD in terms of the SCR using both HH and VV polarizations data with a resolution of 3m. The two curves have natures of monotonic increasing functions, but for the VV polarization case data the Bayesian-CFAR detector has better detection performances. Here, when we change the antennas polarization from HH to VV, we get improvements in detection probably. This means that the characteristics of the data are probably changed to be no spiky clutter or the spikiness of the clutter is reduced.  
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Figure. 15 PFA  versus scale factor 
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B-CFAR algorithm for a resolution of 3m , HH and VV polarization.
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Figure. 16 PD versus SCR of B-CFAR algorithm using real data with HH and VV polarizations and resolution of 3m

V. Conclusions
In this work, we analyzed and compared the performance of non-parametric CFAR detectors in presence of log-normal, Weibull and Pareto type II clutter. From simulated data, the Bayesian-CFAR detector provided a full CFAR property and offered the smallest detection probability values, since the two parameters are unknown which make errors for the estimation of the clutter power. In terms of different range resolutions of IPIX real data, CFAR properties of zlogz-CFAR, logt-CFAR and Bayesian-CFAR detectors are studied almost the same false alarm probabilities were obtained using the Bayesian-CFAR detector for different resolutions 3m, 15m and 30m (envelop detector is used) and for a resolution of 3m (square law detector is used). It was also shown that logt-CFAR and zlog(z) CFAR algorithms can not ensure the CFAR property at the desired false alarm probability if the range cell resolution is changed.
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