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Abstract—Automated text analysis as named entity recognition
(NER) heavily relies on large amounts of high-quality training
data. For domain-specific NER, transfer learning approaches aim
at overcoming the problem of lacking domain-specific training
data. In this paper, we investigate transfer learning approaches in
order to improve domain-specific NER in low-ressource domains.
The first part of the paper is dedicated to information transfer
from known to unknown entities using BiLSTM-CRF neural
networks, considering also the influence of varying training data
size. In the second part instead, pre-trained BERT models are
fine-tuned to domain-specific German NER. The performance
of models of both architectures is compared w.r.t. different
hyperparameters and a set of 16 entities. The experiments are
based on the revised German SmartData Corpus, and a baseline
model, trained on this corpus.

Index Terms—Domain-specific Named Entity Recognition,
BiLSTM-CRF, German, Transfer Learning, Transformers
(BERT).

I. INTRODUCTION

DOMAIN-SPECIFIC knowledge is increasingly hidden in
large amounts of documents, which results in an urgent

need for automated text analysis. However, a common obstacle
is the lack of annotated domain-specific training data, that
are expensive to collect and annotate, resulting in so-called
low-resource domains. Transfer learning (TL) approaches may
overcome this problem by transferring knowledge across dif-
ferent domains. The goal is to transfer knowledge from a
related domain (called source domain) to improve the learning
performance or minimize the number of labeled examples re-
quired in a target domain. Informally speaking, TL approaches
enable the creation of a machine learning model for low-
resource domains, based on the knowledge provided by an
existing machine learning model, which has been trained on
(a larger amount of) training data of a different domain.

This reuse of information also aims at reducing training
times and at the same time obtaining the best descriptive or
predictive performance. A thorough investigation of a large
variety of TL approaches is represented in [1]. We define TL
according to [1], [2] as follows.

Definition 1: (Domain) A domain D = {X , P (X)} consists
of a feature space X and a marginal probability distribution
P (X). X denotes an instance set, defined as X = {x|xi ∈
X , i = 1, ..., n}.

Definition 2: (Task) A task T = {Y, f} consists of a label
space Y and a decision function f . The decision function f
is an implicit one, which is expected to be learned from the
sample data.

Definition 3: (Transfer Learning) Given a source domain DS

with a corresponding source task TS and a target domain DT

with a corresponding task TT , transfer learning is the process
of improving the target predictive function fT by using the
related information from DS and TS , where DS 6= DT or
TS 6= TT . The case where the feature space XS = XT is
defined as homogeneous transfer learning.
In our work, we only consider homogeneous transfer learning.
The task under consideration is Named Entity Recognition
(NER), which is a classification task, assigning words or
more complex parts of a text document (tokens) to predefined
entity classes. Focusing on domain-specific German text data,
we are constantly confronted with the lack of training data.
This led us to the general question: which TL approaches
could support NER on a domain-specific German corpus and
how. Our investigations were motivated by the following three
questions:

Q1 Is it possible to transfer information within a German
text corpus from one specific domain to another specific
domain?

Q2 What is the influence of the training data size on this
special case?

Q3 Does domain-specific NER also profit from general do-
main knowledge and general task knowledge as provided
by BERT language models?

Our investigations are based on the SmartData corpus [3],
published in 2018. The SmartData corpus was the only avail-
able German corpus covering two different specific domains,
namely traffic and industry, and providing annotations for 16
(domain-specific) entities. This enabled us to address Q1 and
Q2 with a homogeneous TL approach, based on a Bidirectional
Long-Short-Term-Memory Neural Network with Conditional
Random Fields (BiLSTM-CRF) as described in section IV.
The first part of the experiments comprises of the source
model training for only 15 entities, and uses this knowledge
for the target model training for the remaining entity. Thus
in this experiment, the set of labels in the source domain YS
differs from those in the target domain YT . These models are
compared with models, trained without transfer learning. In
the second part the impact of training data size is investigated.
The results of these experiments (section V) are discussed in
section VI.

Almost at the same time as the SmartData corpus, the new
language representational model BERT (Bidirectional Encoder
Representations from Transformers) was published [4], intro-
ducing a different concept of TL for down-stream tasks as
NER. BERT models are trained using two unsupervised tasks,
namely the masked language model (MLM) task and the next
sentence prediction (NSP) task. The training is performed on
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large general domain text corpora. We address Q3 by fine-
tuning BERT models on the downstream task, NER, using the
domain-specific German text corpus. Thus, again the transfer
learning approach comprises of different tasks. In addition, the
set of instances, X , in the source domain is enhanced with
the SmartData corpus in the target domain. For fine-tuning,
we used the German Bert model [5], which is the first BERT
model being trained on German text data, and the multi-lingual
BERT model, released by Google [6]. Training for refinement
also includes a hyperparameter study. The resulting BERT
models are compared with the previously obtained baseline
BiLSTM-CRF model. The approach, experiments, and results,
including the comparison with the BiLSTM-CRF baseline
model, are described in section VII. This work is based on
a revision of the SmartData corpus, version 1, described in
section III. Related work is presented in section II.

II. RELATED WORK

Before the introduction of the transformer architecture [7]
and the BERT model [7], state-of-the-art (SOTA) results for
the NER task were achieved with BiLSTM-CRF models as
desribed in [8]. A thorough investigation of different network
design choices and hyperparameters for five common linguistic
sequence tagging tasks, including NER, were presented for
the English language in [9]. For our work, a BiLSTM-CRF
baseline model was generated, including a hyperparameter
study that includes a large variety of German word embed-
dings. This is based on the implementation and the concept of
[8], [9]. Transfer learning (TL) for domain-specific NER was
studied for the first time in [10], investigating de-identification
of electronic health records. A LSTM-network was trained on
a large source dataset and retrained with varying training size
on a target data set for analyzing the impact of the training
data size. Compared to a randomly initialised network, the
highest improvement was obtained with the smallest training
data size (5%) which decreased with increasing size of training
data. A similar study in the biomedical domain [11] assessed
the effect of transfer learning on the performance of NER
based on LSTM-CRF on 23 different datasets covering four
different types of biomedical entity classes. Compared to a
SOTA baseline, with transfer learning, an average reduction
in error of approximately 11% was observed for their experi-
ments. They also reported that performance gains from transfer
learning diminish as the number of training examples used for
the target training set increases. [10], [11] motivated Q2 for
our application and network architecture. Note, that in both of
these works the entities in the target domain remain the same
as in the source domain.

In contrast [12] focuses on TL for different entity sets in
source and target domain, where the source entity sets are
more coarse than the target entity sets. BiLSTM-CRF models,
which are pre-trained on the source domain, are trained for
new entities and compared with models without pre-training.
In this case, it was not possible to identify a clear trend for pre-
trained models, except a slight improvement for small target
training sets independent from the selected entity subsets. In
[13], a target domain is considered, that only consists of new

entities. A pre-trained BiLSTM-CRF model is refined on the
target data only, which are labeled with the new entities. They
showed that the recognition of the considered entity classes
can be improved without degrading the recognition of the
other entity types. For the experiments Italian language text
data from the industrial domain was used. In our work these
investigations, presented in [12], [13], motivated Q1. However,
our experiments not only cover fine-tuning for each of the 16
entities within the SmartData corpus, but also a comparison
with models, which are simultaneously trained for all of the
16 entities.

With the success of the transformer based BERT model
[4], NER was treated as a downstream task, using pre-trained
models. In [4] already state-of-the-art results were reported
for the CoNLL-2003 NER task [14]. Only recently, a Ger-
man single language model (GottBERT) [15] was published,
which is based on the robustly optimised BERT modification,
called RoBERTa [16]. This model was evaluated on the two
NER tasks CoNLL-2003 and GermEval 2014 [17] on the
German portion of the OSCAR data set [18]. These NER
tasks, however, only consists of four entities (person, location,
organisation, miscellaneous). Based on our knowledge, there
is no previous work which considers fine-tuning BERT models
for NER on the German SmartData corpus, thus this addresses
Q3.

In the work presented here, we first aim at derive new mod-
els from previously trained models to recognize completely
new entity classes on the German SmartData text corpus.
Secondly, we study the impact of the training data size. Finally,
we focus on the BERT models, which have been fine-tuned for
German domain-specific NER and compared to BiLSTM-CRF
baseline models.

III. GERMAN NAMED ENTITY CORPUS

The experiments described in this paper are based on the
German SmartData corpus (version1) [3], which is annotated
with traffic and industry-related entities and n-ary relations.
The work presented here only focuses on NER and the
domain-specific entities. The SmartData corpus is the first
German dataset that contains more entities than the most
commonly used entities person, organization, place, and mis-
cellaneous, which were introduced in the CONLL 2003 dataset
[14]. Furthermore, the SmartData corpus is the only one com-
prising documents of different genres, namely tweets, RSS and
news articles, which differ e.g. in length, length of sentences,
or type of language. Text data were collected in the period
from January 1, 2016 to 31 March 2016, where about 150
mobility and industry-relevant channels were tracked using
300 keywords. Search terms included traffic-related events
such as traffic jams or construction, as well as large motorways
and airports by names. In order to obtain industry-relevant
results, keywords like dismissal or insolvency were used. The
documents were annotated with sixteen different entity classes,
which are explained in Table I. News articles were truncated
after the first 1000 characters, in order to reduce the annotation
effort. This results in incomplete sentences at the end of some
articles, but it is assumed that enough semantic information is
retained.
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TABLE I: Definition of Entity Types, Annotated in the German SmartData Corpus

A. Data Preprocessing
The experiments, described in this work, are based on a

revised version of the SmartData corpus, which in the follow-
ing is referred to as revised SmartData corpus. The revision
comprises of the deletion of duplicates, a conversion into the
IOB2-format (a.k.a. BIO-format), and a more sophisticated
split into training, validation, and test data. The IOB2-format
was chosen as it was shown to yield best results on NER
with BiLSTM-CRF neural networks [9]. It uses three different
tags, namely the B-tag (begin), the I-tag (inside), and the O-tag
(outside). Non-entities are labeled with the O-tag. For entities,
consisting of several words, the first one is labeled with the B-
tag, and the following ones with the I-tag. Entities, consisting
of a single word, are also marked with the B-tag.

The original SmartData corpus was randomly split into
50% training and 50% test data. Because of duplicates in
the originally published data, this 50/50 split differs from an
ideally distributed split w.r.t. the distribution of entities and the
document genres. This causes a bias within the training and
test set, concerning the genre of the document, as well as the
entity classes. In the revised SmartData corpus the data is split
into training, validation, and test data, taking into account the
distribution of document types and entity classes within the
data. This distribution is depicted in Figure 1, whereas the
y-axis shows the number of entities.

The revised SmartData corpus is split into 70% training,
10% validation, and 20% test data. Minimization of the
deviation from the ideal splitting according to the document
genre was reached through stratified random sampling of the
documents. The corresponding algorithm is described in [19].

IV. NAMED ENTITY RECOGNITION APPROACH

The aim of the work, presented in this paper, is to investigate
different TL approaches for domain-specific NER. For this
purpose, a BiLSTM-CRF baseline model is generated in a first
step. In this section, we describe the architecture of a BiLSTM-
CRF neural network, followed by the training procedure, we
conducted. Finally, we explain the hyperparameter optimiza-
tion that is performed to obtain a stable baseline model, which

Fig. 1: Entity distribution of the 16 considered classes in the
revised SmartData corpus.

is used for the TL experiments, presented in section V. The
results of the experiments are presented in VI.

A. Architecture

A Long-Short-Term-Memory (LSTM) network [20], as
shown in Figure 2, is a recurrent neural network, suitable
for processing sequential data. It is equipped with a short-
term memory, which is used to reflect dependencies within
the sequential input. As depicted in Figure 2, each LSTM-cell
receives three input vectors: a memory vector of the previous
cell ct-1, the hidden state vector of the previous cell ht-1, and the
input vector xt. The red rectangles display feed-forward neural
nets (FFNN) with their respective activation function. These
FFNNs are (from left to right): the Forget and Input gate, the
candidate layer, and the Output gate. They are responsible for
the further processing of the input vectors and their weighting.

The bidirectional extension BiLSTM [21] was introduced
for entity recognition. Two different LSTM networks are
trained, one of them processes the sequences from left to right,
the other one from right to left. The output vectors of the two
BiLSTMs are concatenated and passed to a CRF layer, which
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Fig. 2: LSTM-Network - recursive and enrolled representation,
detailed presentation of LSTM-cell A

optimizes the recognition of sequences of entity tags. For this
purpose, a transition probability matrix is trained for all entity
tags. Further improvements are gained by considering not only
the words, but also the characters, which are represented by so-
called Char-Embeddings. Char-Embeddings are trained either
by using an additional BiLSTM-layer [8] or a convolutional
neural net (CNN) [22].

B. Training of BiLSTM-CRF Networks

The BiLSTM-CRF models are trained and tested on the
revised SmartData corpus after the data was split into training,
validation, and test data as described in section III. The
evaluation of the trained models is based on the Micro-
Average-F1-Score, which reflects the distribution of the dif-
ferent entity classes in the corpus. According to [14], the F1-
Score is calculated for each entity class and weighted by the
number of entities within this class. Each model is trained
for a maximum of 10 epochs. After each epoch, the F1-
Score is calculated on the validation set. If this yields the
highest score, then the F1-Score is calculated on the test data.
Early stopping on the validation set is set to 10 epochs. For
comparison, the Macro-Average-F1-Score is also reported for
some experiments, which refers to the sum of unweighted F1-
Scores for each entity class divided by the number of entity
classes.

C. Hyperparameter Optimization

In order to generate a stable baseline model for the TL ex-
periments, an optimal hyperparameter configuration is aimed
to be defined. For English text corpora, a thorough hyper-
parameter study for five different sequence labeling tasks,
including NER, is described in [9]. The German dataset used
provides considerably more entities than the English dataset,
therefore a new hyperparameter study is conducted based
on [9]. The hyperparameter space is depicted in Table II.
smin refers to a threshold, defining the minimal number of
occurrences of a single normalised word in the training data.

TABLE II: The Hyperparameter Space for Optimization

Hyperparameter Values Best

Word-embeddings FastText [27], SB Wiki+
Word2Vec [17], [28] Vectors NLP+

SB Tweets
Threshold smin 1,3,5,10 5
POS-tags yes, no no
Chunking-Tags yes, no no
Char-Embeddings LSTM, CNN LSTM
BiLSTM-Layer 1,2,3 1
Units of LSTM-Net 100, 200, 250 200
Dropout 0.1, 0.3, 0.5 0.5
Variational Dropout 0.1, 0.3, 0.5 0.5
Batchsize 8, 16, 32 16
Optimizer Adam, Nadam, RMSProp Adam

F1-Score 0.7834

Normalised words are words that are transformed in a rule-
based manner, e.g. replacing numbers with specific tokens.
If a word is not represented within the word-embeddings and
does occur more than smin times within in the training data, an
embedding is sampled from the zero-mean normal distribution
with a standard deviation of 0.25. CNN stands for Convolu-
tional Neural Network, where Adam, Nadam, RMSProp refer
to the optimizers described in [23]–[25], respectively. Combi-
nations of domain-specific and unspecific word-embeddings
may improve the results on domain-specific texts [26]. In
the context of this hyperparameter study, therefore, not only
different word embeddings but also different combinations of
embeddings are considered.

The optimization process is organized as follows. First, ran-
domized testing yields a set of ten configurations considered
to be the best. Given these configurations, ten different word-
embeddings and combinations therefrom are tested again.
Finally, the ten best configurations of the randomized testing,
each of them with one of the two best word-embeddings fixed,
are used to test the remaining hyperparameters independently.
The selection of the best hyperparameters are selected w.r.t. the
averaged F1-Score on the validation set. For this reason, the
effects of the hyperparameters are not only examined on the
F1-Score of the test set, but also on the F1-Score of the
validation set. In total, 2765 models are trained and 1348 dif-
ferent configurations are tested within the randomized testing.
This yields a preselection for the further hyperparameter study,
where another 5.600 models are trained.

In Table II the best hyperparameter configuration according
to the F1-Score on the validation set and the corresponding
F1-Score are depicted in the rightmost column. The word
embedding SB Wiki+Vectors NLP+SB Tweets refers to the
concatenation of the word embeddings SB Wiki, VectorsNLP,
and SB Tweets, yielding word-embeddings of dimension 500.
SB Wiki, and SB Tweets both are trained with the Fasttext
algorithm [29] on two million German Wikipedia articles
and 50 million German Tweets, respectively. VectorsNLP are
trained with the ”Word2Vec Continuous Skipgram” algorithm
on the German CoNLL17 data set [30] and are available online
[31].

The hyperparameter configuration, obtained by the opti-
mization process described above, is used for the generation
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of the baseline model and the TL experiments, described in
section V. More details about this hyperparameter study can
be found in [32].

V. TRANSFER LEARNING WITH BILSTM-CRFS

In this section, we present TL experiments based on
BiLSTM-CRF networks. The task under consideration is NER
on the revised SmartData corpus for each of the 16 annotated
entity classes. The investigation comprises the impact of a TL
approach on this task and the dependency of this approach on
the training data size. The TL experiments, conducted in this
work, are homogeneous, i.e. the feature space of the source
domain is the same as of the target domain, referring to the
revised SmartData corpus.

A. Experimental Setup for each Entity Class

The revised SmartData corpus consists of documents, which
are annotated with 16 different entity classes E1, ..., E16 (see
Table I). For each of these entity classes Ei a new dataset is
derived from the revised SmartData corpus as follows. Each
entity annotation of class Ei is removed, whereas all the other
entity annotations for the remaining fifteen classes are kept.
The derived dataset will be referred to as D(!Ei)base. Based
on D(!Ei)base, a BiLSTM-CRF network, called Msource, is
trained for the recognition of the remaining fifteen entities. It
acts as a base model for the TL experiment for class Ei. The
training is run ten times.

For conducting the TL experiments, a target data set
D(Ei)tar is created by removing all entity annotations but
the entity annotations of the considered entity class Ei. The
respective text sequences within training, validation and test
dataset are instead replaced by the non-entity tag ’O’. Based
on the data set D(Ei)tar, three different BiLSTM-CRF nets
are trained ten times each for the recognition of the entity
class Ei. The three different BiLSTM-CRF nets are named
M(rand)Ei , M(all)Ei , and M(noLL)Ei , and are initialised
as follows:

1) M(rand)Ei
: a randomly initialised BiLSTM-CRF neural

net serving as a baseline model
2) M(all)Ei

: all weights of Msource are transferred into
M(all)Ei

3) M(noLL)Ei : all weights of Msource without the last
BiLSTM layer are transferred, and a new output layer
with size three is added into M(noLL)Ei

. The output
layer corresponds to the three tags (O, B, I), labeling non-
entities, single word entities, and multiple word entities
as described in section III.

B. Influence of Training Data Size

The training data of D(Ei)tar is split into seven parts, each
of them containing 10% of the data set D(Ei)tar. This split
is stratified according to the number of entity occurrences
within one sentence. Combining these smaller data sets yields
seven training data sets sized by 10%, 20%, 30%, 40%, 50%,
60%, and 70% of D(Ei)tar, respectively. The TL experiments
as described above are run for each size of training data.

The optimized hyperparameter configuration, as described in
section IV, is used for all of the experiments. As for the
baseline, the training is run ten times on each data set in order
to reduce statistical noise. Validation is based on the averaged
F1-Score on the validation data. The experiments as described
above are run for each of the 16 entity classes. Thus, the TL
experiments comprises the training of 220 neural networks for
each entity class, i.e. 3520 models in total.

For comparison, models that recognize all 16 entity classes
at the same time are considered as well.

VI. RESULTS TRANSFER LEARNING EXPERIMENTS

The results of the TL experiments show that, in principle,
the knowledge about the other fifteen entity classes on average
helps in recognizing a new entity type. The influence decreases
with increasing training data size. This holds for most of
the considered entity classes, which we investigated in our
studies. To illustrate this, in Table III the averaged F1 score
over all available sixteen entity classes is given for each
trained model. The individual results for all the 16 independent
entity classes are shown in Figure 3 and 4. We use box-
plot methods, presenting the min and max of the averaged
F1 score as well as the 25% and the 75% percentiles. The
lines between the boxes connect the mean values in order
to underline average behaviour. The yellow lines refer to
the randomly initialised baseline model M(rand)Ei

, the blue
lines refer to the model M(all)Ei

, receiving all weights from
the source model Msource, and the red lines refer to the
model M(noLL)Ei , receiving all weights, except for the last
BiLSTM layer from the source model Msource before being
trained further.

We observe, that the TL model, which takes over all weights
to the new network, performs slightly better than the model
where the last layer is left out. Although the differences are
small, especially for larger training data sizes, the general
behavior is consistent over almost all of the compared dataset
sizes and entities. This behavior appears counter intuitive,
since the model first needs to forget about the previously
learned 15 entity classes. However, adapting a model to one of
15 classes might be less difficult than reducing the classes from
15 to 1. This assumption could be verified by running further
experiments, generating base models Msource (see section V)
with different, smaller numbers of entities. The differences
between the considered models in our experiments are largest
with the smallest training dataset sizes.

We further observe F1-Scores, which are in general higher
for all TL models compared to the baseline. This might be due
to the source models Msource that were trained on the entire
training data set and thus can probably handle the embedding
vector representation of the individual words better than a
neural net trained only on a fraction of the data set. Only
the entity class ’POS’ does not follow the general trend. This
is most likely due to the fact, that for this class only 122
messages are included in the full data set, and our splitting
method does not guarantee to have sufficient training data in
each data sample. This can also be seen in the drastically lower
F1-Score for all models for the entity class ’POS’ (see chart
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transfer learning model averaged F1 score for amount of training data (% of full data set)
i = {1, ..., 16} 10 20 30 40 50 60 70

without: baseline M(rand)Ei
0.672 0.715 0.737 0.752 0.763 0.769 0.771

TF all: all weights M(all)Ei
0.698 0.734 0.748 0.758 0.766 0.773 0.774

TF without last layer: M(noLL)Ei
0.682 0.733 0.744 0.759 0.765 0.770 0.773

TABLE III: Averaged F1 scores over all entity classes for different training data sizes.

(a) DAT (b) DIS

(c) DIS-TYP (d) DUR

(e) LOC (f) LOC-CIT

(g) LOC-ROU (h) LOC-STO

Fig. 3: TL results for varying training data size for entity 1-8.
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(a) LOC-STR (b) NUM

(c) ORG (d) ORG-COM

(e) PER (f) POS

(g) TIM (h) TRI

Fig. 4: TL results for varying training data size for entity 9-16.

(f) in Figure 4). Experiments without the outlier class ’POS’
show comparable results concerning the TL model with all
weights compared to the model without the last layer.

For each entity class, we choose those models of the TL
experiments that yield the highest average F1-Score on the
validation set, trained on training data of size 70%. For

each entity class, we compare the average F1-Score on the
validation set and the test set with the average F1-Scores
of the multi-entity models MULT, trained for all entities at
the same time. Table IV shows that, on average, the multi-
entity models perform better on the test data. However, there
were single TL models that performed better on some entity
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TABLE IV: Comparison of MULT model with best models
from TL experiments.

MULT Best Models
from TL-Experiments

Entity Validation Test Validation Test

DAT 0.7790 0.8015 0.7883 0.7983
DIS 0.9885 0.9716 0.9977 0.9762

DIS-TYP 0.6261 0.6989 0.6953 0.6613
DUR 0.7087 0.7177 0.7379 0.6584
LOC 0.7880 0.7803 0.7951 0.7706

LOC-CIT 0.8365 0.8445 0.8209 0.8394
LOC-ROU 0.7997 0.8419 0.8523 0.8437
LOC-STO 0.8512 0.9123 0.8941 0.9073
LOC-STR 0.8858 0.8687 0.9051 0.8756

NUM 0.7918 0.7811 0.7870 0.7736
ORG 0.5744 0.6830 0.6396 0.6545

ORG-COM 0.7516 0.7024 0.7539 0.6931
PER 0.8444 0.7567 0.8695 0.7665
POS 0.5653 0.5510 0.5982 0.5080
TIM 0.8451 0.8186 0.8733 0.8309
TRI 0.7333 0.6737 0.7390 0.6757

Total (Micro) 0.7834 0.7756 0.7948 0.7679
Total (Macro) 0.7731 0.7752 0.7967 0.7646

classes. This concerns the entity classes TIM (Time), TRI
(Trigger), PER (Person), LOC-STR (Location-Street), LOC-
ROU (Location-Route), and DIS (Distance). In case of the
entity class TIM (Time), one reason could be an entity length
of 1 or 2 in ∼ 95% of the annotated sequences. Furthermore,
the description of time in most of the cases follows simple
rules.

VII. TRANSFER LEARNING USING BERT MODELS

In contrast to the transfer learning approach, reported in
previous parts of this paper, the concept and application of
the Bidirectional Encoder Representations for Transformers
(BERT) [4] allow a transfer of knowledge in a different
way. A deep neural network is pre-trained on two NLP tasks
in an unsupervised manner and will then be fine-tuned on
special NLP tasks (downstream tasks). The architecture and
the methodological concepts of this approach are described
in detail in [4], [7]. It has had significant impact on the
state-of-the-art performance of many different NLP tasks and
increased the relevance of pre-trained models. Since then,
this approach has been applied and improved for many NLP
applications and different languages (see e.g. [15], [33]). The
first pre-trained models, that have been released by Google
and others, were trained on general domain corpora such as
news articles and Wikipedia text documents. However, in order
to improve NLP tasks like NER in specific domains, pre-
training should be conducted on large domain-specific corpora.
This is already done for some domain-specific Bert-based
models. The BioBert model [34] was trained on text data of
the biological and medical domain and showed better results
than the English BERT model, released by Google, when being
applied to domain-specific NER. Another pre-trained domain-
specific BERT model is SciBert [35], which has been trained
on text data of biology, medicine, and computer science. In
our work, however, due to the small size of the SmartData
corpus and the lack of large-size domain-specific German

TABLE V: Hyperparameter Space for Refinement Training.

Hyperparameter Values Best

BERT model multi-lingual, German German
Learning rate (Adam) 1e-5, 2e-5, 3e-5, 5e-5 1e-5
Batchsize 8, 16, 32 8

training corpora, we focus on BERT models, which are pre-
trained on general domain corpora, and refine them on the
NER task on the German SmartData corpus. The models under
consideration are the multi-lingual BERT model, provided
by Google [6], and the German BERT model, released by
Deepset.AI [5]. This model was the first German model, which
has been released and at that time the only available one. In
the following paragraphs, the refinement of the pre-trained
models is described, followed by a parameter optimization
study, and the comparison with the BiLSTM-CRF baseline
model as described in section IV.

A. Refining Pre-Trained BERT Models

In our work, we refine pre-trained BERT models w.r.t. NER
on the German SmartData corpus. The BERT models under
consideration are the multi-lingual BERT model [6], and the
German BERT model [5]. In the following, the process of
refinement is described, which also comprises pre-processing
the SmartData corpus. The BERT architecture requires sub-
words instead of words as input sequence. Therefore, using
the tokenizer of the BERT model, each word in the corpus is
separated into word pieces and the first word piece is indicated
by the special token ”##”. Unknown tokens are marked with
the ”Unknown”-token ”[UNK]”. Entity tags are assigned to
initial word pieces iteratively. The maximal sequence length is
set to 128, not counting the ”[CLS]” and ”[SEP]” tokens, which
are used to mark the beginning and the end of a sequence. We
use padding for short sequences, whereas longer sequences
were cut off.

For refinement training of the given BERT models, the
output of the last layer is fed into a feed-forward network.
According to [4], the loss is calculated on the last layer of the
network using the optimizer, Adam [23]. We use the PyTorch-
Transformers Framework, provided by Huggingface [36], and
the framework FARM [37].

B. Parameter Optimization

The refinement training includes an investigation of the
hyperparameter space as depicted in Table V. For each config-
uration 10 models are trained, resulting in 240 trained models.
Early stopping after five epochs is used during the training
process.

The multi-lingual and the German BERT model are both
BERT-base-models [4], i.e. each of them consists of 12 layers
with a hidden size of 768 and each model consists of 12 at-
tention heads. Both models are ”cased” models, differentiating
between lower and upper cases. The multi-lingual model was
pre-trained on the Wikipedia dumps of the most common 104
languages. This results in a small fraction of German training
data. For this reason, the vocabulary of the tokenizer of the
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TABLE VI: F1-Scores Depending on the BERT-Model

Validation Micro-F1 Test Micro-F1
BERT-Model Min Max Avg Std Dev Med Min Max Avg Std Dev Med

German 0.7555 0.7870 0.7733 0.0056 0.7731 0.7530 0.7857 0.7699 0.0058 0.7696
multi-lingual 0.7597 0.7816 0.7713 0.0049 0.7718 0.7471 0.7806 0.7626 0.0061 0.7629

Fig. 5: F1-Scores depending on the BERT model

multi-lingual model, which was trained with WordPiece [38],
is very strongly influenced by different languages and thus
has a limited number of subwords that are appropriate for the
German language. For the German model the tokenizer was
trained using SentencePiece [39]. Therefore we investigated
the coverage of the data set by the subwords provided by
the tokenizers. It turns out, that the multi-lingual model needs
236.704 subwords (1,56 subwords per word) in order to cover
the entire SmartData corpus whereas the German model only
needs 209.925 subwords (1,38 subwords per word). Thus we
expected a better performance of the German model, which is
confirmed by the experiments, where the German models yield
better F1-scores (see Figure 5). Hereby, the difference on the
test set is higher than on the validation set (see Table VI).
Compared to the German model, the multi-lingual model
needs, on average, two more epochs for termination.

We further investigated, whether certain entity types are
better recognised by one model than by the other. Although in
general the German model achieves the better F1 scores, the
multi-lingual model achieves the better F1 scores in recog-
nising durations (average difference 2.8-4.8%) and positions
within companies (average difference 5.2-5.5%). The German
model, on the other hand, is better in recognising organisations
(average difference 2.3-2.6%) and disaster types (average
difference 4.1-9.2%). For the detection of people and roads, the
two models achieves comparable results on the validation set.
However, on the test set, the German model achieves F1 scores
that are 2.33% and 2.35% higher on average, respectively.
For the other entity classes, either the differences between the
models are smaller or they are less clear. For the recognition of
time e.g., on average the multi-lingual model achieves better
F1 scores on the validation set whereas the German model

Fig. 6: F1-Scores depending on learning rates

achieves higher F1 scores on the test set.

1) Learning rate: The investigation of different learning
rates did not show any clear result (see Figure 6). On average,
the best results were yielded with a learning rate of 1e-5.
However, the differences compared with other learning rates
were very small.

2) Batch Size: The experiments with smaller batch sizes
show better results. A batch size of 8 yielded the best results
(see Table VII). This might be due to the small size of the
SmartData corpus.

In Table VI and VII, the standard deviation is presented. The
values vary between 0.49% (Table VI: multi-lingual model,
validation set, Table VII: batch size 32, validation set) and
0.75% (Table VII: batch size 8, test set). This indicates
statistically stable models, if we consider the recognition of
all entities. If we consider each single entity, this might be
different as the number of annotated entities varies within the
data. Looking at the box-plots in Figure 3 and 4, we observe
a remarkable variance. This concerns the averaged F1 scores,
which vary e.g. between below 0.70 for the entities ORG,
POS, TRI in Figure 4, chart (c), (f), and (h), and up to more
than 0.80 for the entities DAT, DIS, LOC-CIT, LOC-ROU,
LOC-STO, LOC-STR, and TIM (see Figure 3, chart (a), (b),
(f), (g), and (h), and Figure 4, chart (a) and (g)). More insight
could give the calculation of p-values. However, this needs to
make the assumption of independence of the models, which is
not obvious in the case of our TL experiments. The varying
distribution of entities within the data also may distort the
results. Thus, the box-plots for the single entities seems to be
more appropriate for the analysis of our results.
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TABLE VII: F1-Scores Depending on Batch Sizes

Validation Micro-F1 Test Micro-F1
Batch size Min Max Avg Std Dev Med Min Max Avg Std Dev Med

8 0.7616 0.7870 0.7752 0.0052 0.7749 0.7471 0.7857 0.7684 0.0075 0.7685
16 0.7614 0.7813 0.7719 0.0045 0.7717 0.7524 0.7840 0.7660 0.0065 0.7665
32 0.7555 0.7835 0.7698 0.0049 0.7698 0.7494 0.7787 0.7644 0.0066 0.7646

TABLE VIII: F1-Scores Depending on Entities

Validation F1 Test F1
BiLSTM BERT BiLSTM BERT

Entity Max Avg Max Avg Max Avg Max Avg

DAT 0.8075 0.7664 0.8122 0.7755 0.8290 0.8028 0.8243 0.7875
DIS 1.0000 0.9822 1.0000 0.9601 0.9882 0.9715 0.9762 0.9551
DIS-TYP 0.7556 0.6203 0.7826 0.5776 0.7816 0.6813 0.7470 0.6247
DUR 0.8049 0.7146 0.7778 0.6652 0.8295 0.7222 0.6780 0.5995
LOC 0.8318 0.7896 0.8037 0.7617 0.8071 0.7736 0.7885 0.7575
LOC-CIT 0.8646 0.8323 0.8671 0.8232 0.8719 0.8439 0.8525 0.8160
LOC-ROU 0.9189 0.7950 0.8767 0.8119 0.9067 0.8273 0.8794 0.8146
LOC-STO 0.9038 0.8519 0.9307 0.8832 0.9565 0.9096 0.9364 0.8935
LOC-STR 0.9306 0.8826 0.9437 0.8972 0.9084 0.8603 0.9296 0.8844
NUM 0.8249 0.7836 0.7929 0.7477 0.8234 0.7891 0.8132 0.7792
ORG 0.6754 0.5700 0.6983 0.6269 0.7342 0.6741 0.7403 0.6738
ORG-COM 0.7778 0.7370 0.7780 0.7396 0.7349 0.6968 0.7433 0.7084
PER 0.8990 0.8373 0.9039 0.8518 0.8127 0.7708 0.8436 0.8099
POS 0.8148 0.5490 0.7692 0.5552 0.7170 0.5386 0.6809 0.5217
TIM 0.8944 0.8358 0.8970 0.8202 0.8598 0.8219 0.8599 0.8017
TRI 0.7754 0.7197 0.7463 0.6974 0.7236 0.6758 0.7308 0.6848
Total 0.7921 0.7762 0.7870 0.7723 0.7918 0.7740 0.7857 0.7663

C. Comparison with Baseline Model BiLSTM-CRF

The investigation of pre-trained BERT models and their
refinement for domain-specific NER is concluded with a
comparison with the BiLSTM-CRF baseline model, trained
as described above (see section IV). This comparison was
conducted on entity level. Table VIII shows the maximum and
the average F1-scores. On average, the BiLSTM architecture
scored 0.24 % higher than the BERT architecture on the
validation set and 0.77% higher on the test set. However, the
number of trained BiLSTM models is more than ten times
higher than the number of trained BERT models. Therefore,
since the BERT model yields a higher average value for a
single entity, this can be seen as a clearly better recognition of
this entity. This can be observed for the recognition of persons
(PER), commercial organizations (ORG-COM), and streets
(LOC-STR), which are all proper names. On the other hand,
city names (LOC-CIT) were better recognized by BiLSTM
models.

VIII. CONCLUSION

In this paper, we presented TL approaches for entity recog-
nition on a German text corpus. The motivation of these in-
vestigations was to overcome the problem of lacking domain-
specific training data by transferring structural information
from one model to another. Our investigations addressed the
following questions:
Q1 Is it possible to transfer information within a German

text corpus from one specific domain to another specific
domain?

Q2 What is the influence of the training data size on this
special case?

Q3 Does domain-specific NER also profit from general do-
main knowledge and general task knowledge as provided
by BERT language models?

Our experiments are based on the revised SmartData corpus,
i.e. the pre-processed SmartData corpus enriched with BIO-
annotations and a revised splitting into training, validation,
and test data.

We considered two different approaches. First, our investi-
gation focus was on the transfer from a specific domain to a
different specific domain, i.e. from a model Msource trained
for the recognition of entity classes E1, ..., En within domain
Domsource to a model Mtarget intended to be used for the
recognition of a new entity class, Enew within a different
specific domain Domtarget. In particular, the influence of the
size of the target training data set was studied.

Due to the lack of further domain-specific German text
corpora for entity recognition, we defined the source and
target feature space to be the same, differing only with respect
to annotations. For our experiments we used BiLSTM-CRF
neural networks.

Our investigations showed that the transfer of structural
information, gained beforehand by training entity recognition
for some classes E1, ..., En, improves the entity recognition
for a new entity class, Enew. The SmartData corpus provides
entity annotations in different domains. Thus, it is possible
to transfer information from one specific domain to another
specific domain (Q1). However, in our TL experiments, the
entities of the source domain belong to both domains, namely
traffic and industry, whereas the entity in the target domain
only belongs to one of these domains. Further investigations
need a more strict separation between source and target
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domain, in order to obtain a clear picture.
Improvements are highest when the size of the target

training data is small, and depend on the entity class under
consideration (Q2). Further experiments showed that learning
all entity classes in common yields even better results.

Future work should be based on text corpora from different
domains such that source and target domain not only differ
in annotations but also in occurrence in the vocabulary. This
would enable a study of the described TL approaches in
combination with transfer of domain-specific knowledge as
described in [40], where a pre-trained model is combined with
a model trained on the new data. This is done by solving a
word vector alignment problem and thus adapting word vector
models and text classifiers to new data.

A comparison with other approaches could provide some
indication of the quality of the results. This may include
different learning approaches but also different text corpora.

In the second part of our study we addressed the fine-
tuning of BERT models on the downstream task NER. In
this case, transfer learning refers to the usage of a pre-trained
model, which was trained on a large general domain text
corpus and refined for the domain-specific downstream task
NER. We fine-tuned a multi-lingual and a German BERT
model for German NER on the revised SmartData corpus
and conducted a hyperparameter study. Experiments showed
better results for the German BERT model, however for
some entities the multi-lingual model performed better. A
comparison with the generated BiLSTM-CRF baseline model
showed that on average, BERT models performed almost as
well as the BiLSTM-CRF model. This is remarkable as the
number of experiments with the BiLSTM-CRF baseline model
is more than ten times higher than with the BERT models.

Further investigations may include the transfer of word-
embeddings as studied in [40]. Due to the lack of training
data in many domains, a systematic study of the required size
of training data could be helpful. This could offer guidelines
for the extent to which the costly provision of domain-
specific training corpora is strongly required in order to reach
acceptable performance results on NLP tasks in low-resource
domains, or for corpora of different languages.

As this work was motivated by real word applications, we
conclude that transfer learning is very helpful in low-resource
domains. However, there remains a gap due to the lack of
domain-specific knowledge, which needs to be provided by
larger domain-specific training corpora or other approaches as
proposed e.g. in [41]. The revised SmartData corpus, including
all results of this work will be made publicly available, and
can also be provided upon request.
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