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Abstract—Address parsing consists of identifying the segments
that make up an address, such as a street name or a postal code.
Because of its importance for tasks like record linkage, address
parsing has been approached with many techniques, the latest
relying on neural networks. While these models yield notable
results, previous work on neural networks has only focused to
parse addresses from a single source country. We propose in this
paper an approach in which we employ subword embeddings and
a Recurrent Neural Network architecture to build a single model
capable of learning to parse addresses from multiple countries
at the same time while taking into account the difference in
languages and address formatting systems. The proposed method
achieves an average accuracy (token-wise) of 99 % on the test set
of the countries used as the source dataset with no pre-processing
nor post-processing being required. We explore the possibility of
transferring the address parsing knowledge acquired by training
on some countries’ addresses to others with no further training
in a zero-shot transfer learning setting. We also experiment
using an attention mechanism and a domain adversarial training
algorithm in the same zero-shot transfer setting to improve
performance. Both methods yield state-of-the-art performance for
the majority of the tested countries while giving good results on
the remaining countries. We also explore the effect of incomplete
addresses on our best model, and we evaluate the impact of using
incomplete addresses during training. In addition, we propose
an open-source Python implementation of some of our trained
models1.

Index Terms—Address Parsing, Sequence labelling, Deep
Learning, Zero-shot Learning, Attention Mechanisms, Domain
Adversarial

I. INTRODUCTION

Address Parsing is the task of decomposing an address
into the different components it is made of. This task is an
essential part of many applications, such as geocoding and
record linkage. Indeed, to find a particular location based on
textual data, it is quite useful to detect the different parts of an
address to make an informed decision. Similarly, comparing
two addresses to decide whether two or more database entries
refer to the same entity can prove to be quite difficult and prone
to errors if based on methods such as edit distance algorithms
given the various address writing standards.

There have been many efforts to solve the address parsing
problem. From rule-based techniques [1] to probabilistic ap-
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1https://github.com/GRAAL-Research/deepparse

proaches and neural network models [2], a lot of progress has
been made in reaching an accurate segmentation of addresses.
These previous pieces of work did a remarkable job at finding
solutions for the challenges related to the address parsing task.
However, most of these approaches either do not take into
account parsing addresses from different countries or do so
but at the cost of a considerable amount of meta-data and
elaborate data pre-processing pipelines [3]–[6].

Our work comes with three contributions. First, we pro-
pose an approach for multinational address parsing using a
Recurrent Neural Network (RNN) architecture. We start by
addressing the multilingual aspect of the problem by employ-
ing multilingual sub-word units. Then we train an architecture
composed of an embedding layer followed by a sequence-to-
sequence (Seq2Seq) model. Secondly, we evaluate the degree
to which a model trained on countries’ addresses data can per-
form well at parsing addresses from other countries. Finally,
we evaluate the performance of our models on incomplete
addresses and propose a method to improve their accuracy.

II. RELATED WORK

Since address parsing is a sequence tagging task, it has
been tackled using probabilistic methods mainly based on
Hidden Markov Models (HMM) and Conditional Random
Fields (CRF) [2], [4], [5]. For instance, [4] proposed a large
scale HMM-based parsing technique capable of segmenting
a large number of addresses whilst being robust to possible
irregularities in the input data. In addition, [5] implemented a
discriminative model using a linear-chain CRF coupled with
a learned Stochastic Regular Grammar (SRG). This approach
allowed the authors to address the complexity of the features
better while capturing higher-level dependencies by applying
the SRG on the CRF outputs as a score function, thus taking
into account the possible lack of features for a particular
token in a lexicon-based model. These probabilistic methods
usually rely on structured data as well as some sort of prior
knowledge of this data for feature extraction or in order to
implement algorithms such as Viterbi [7], especially in the
case of generative methods.

In recent years, new methods [2], [3] utilizing the power
of neural networks have been proposed as solutions for the
address parsing problem. Using a single hidden layer feed-
forward model, [6] achieved good performance. However,
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their approach relied on a pre-processing and post-processing
pipeline to deal with the different structures of address writing
and the possible prediction errors. For instance, the input
data is normalized to reduce noise and standardize the many
variations that can refer to the same word, such as road and
rd. In addition, the model’s predictions are put through a rule-
based validation step to make sure that they fit known patterns.
In contrast, [3] proposed a deep learning approach based on the
use of RNN and did not use any pre or post-processing. Their
experiments focused on comparing the performance of both
unidirectional and bidirectional vanilla RNN and Long-Short
Term Memory Models (LSTM) [8], as well as a Seq2Seq. The
models achieved high accuracy on test sets with the Seq2Seq
leading the scoreboard on most of them with no particular
pre-processing needed during the inference process.

Despite reaching notable performances, the aforementioned
approaches are limited to parsing addresses from a single
country and would need to be adjusted to support a multi-
national scope of address parsing. To tackle this problem,
Libpostal2, a library for international address parsing, has
been proposed. This library uses a CRF-based model trained
with an averaged Perceptron for scalability. The model was
trained on data from each country in the world and was able
to achieve a 99.45 % full parse accuracy3, thus defining a
new state-of-the-art4. However, this requires putting addresses
through a heavy pre-processing pipeline before feeding them
to the prediction model. It is our understanding that no neural
network approaches were proposed for multinational address
parsing with a single model. This work aims to build a single
model solution capable of parsing addresses from multiple
countries, exploring the possibility of zero-shot transfer from
some countries’ addresses to others’ and exploring (and im-
proving) the performance on incomplete addresses.

III. SUBWORD EMBEDDINGS

The use of subword embeddings has become popular across
Natural Language Processing tasks given the performance
enhancements they provide to neural network models. Word
embeddings [10], [11] are usually augmented by character-
level or subword-level information before being fed to the
model as inputs, thus granting it a more meaningful repre-
sentation of words. This strategy is employed by the word
embeddings library fastText [12]. A representation of words
as character n-grams is used along with word representations
to produce embeddings. This approach allows for a model ca-
pable of producing richer embeddings, as well as embeddings
for out-of-vocabulary words (OOV), which are computed as
the sum of their n-gram fractions’ embeddings. For example,
the embedding of the OOV word ”H1A 1B1” using a bigram
model is the sum of the fractions’ embedding of {H1, 1A, A1,
1B, B1}.

2https://github.com/openvenues/libpostal
3The accuracy was computed considering the entire sequence and was not

focused on individual tokens.
4For a comparison of some of our models with Libpostal, visit our first

article [9]

A. Byte-pair Encoding

Byte-pair encoding (BPE) [13] is a data compression algo-
rithm which iteratively replaces the most frequent occurrences
of adjacent bytes with a new set of bytes to find a more com-
pact representation of the said data. A new approach for word
segmentation based on the BPE algorithm was introduced by
[14]. Their technique, which was proposed to solve the OOV
problem in Neural Machine Translation (NMT), consists of
representing text as a sequence of characters that are iteratively
merged using the same reasoning behind BPE. This approach
paved the way for the authors to address NMT with an open-
vocabulary solution. Another application of BPE is BPEmb
[15], a set of embedding models that were trained to produce
subword embeddings based on a BPE decomposition of text.
BPEmb offers pre-trained models on 275 languages, as well
as MultiBPEmb, which is a single model trained on the shared
vocabulary of the 275 languages. These models were shown
to have a performance similar to other subword embedding
techniques on an entity typing task while outperforming these
techniques on some languages.

IV. ARCHITECTURES

The following section describes the architectures of our
models, which are composed of an embedding model and
a tagging model as shown in Figure 1. We introduce our
“base approach” architecture in Subsection IV-A, as well we
introduce two improved architectures, one with an attention
mechanism (Subsection IV-B) and another using domain adap-
tation (Subsection IV-C).

A. Base Approach

1) Embedding Model: Since our main objective is to build
a single neural network for parsing addresses from multiple
countries, it is necessary to have access to embeddings for
different languages at runtime. Some libraries, such as fastText
[16] and MUSE [17], offer alignment vectors that enable
the projection of word embeddings from different languages
in the same space. However, these techniques would require
detecting the source language as well as specifying the target
language to use the proper alignments, which we consider
an unnecessary overhead for the task at hand. To resolve the
embedding issue, we propose the following two methods.

First, we use a fixed pre-trained monolingual fastText model
(pre-trained on the French language). We chose French embed-
dings since the French language shares Latin roots with many
languages in our test set. It is also due to the considerable
size of the corpus on which these embeddings were trained.
We refer to this embeddings model technique as FastText.

Second, we use an encoding of words using MultiBPEmb
and merge the embeddings obtained for each word into a
single word embedding using an RNN. This method has been
shown to provide good results in a multilingual setting [18].
Our RNN network of choice is a Bidirectional LSTM (Bi-
LSTM) with a hidden state dimension of 300. We build the
word embeddings by running the concatenated forward and
backward hidden states corresponding to the last time step for
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2325 rue de l'université Québec QC g1v0a6

_0000 _rue _de _l ' université _québec _q c ▁g 0 v 0 a 0
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StreetNumber StreetName StreetName StreetName Municipality Province PostalCode EOS
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Fig. 1. Illustration of our architecture using the BPEmb embedding model. Each word in the address is encoded using MultiBPEmb (the BPE segmentation
algorithm replaces the numbers in the address by zeros). The subword embeddings are fed to the BiLSTM (rounded rectangle with two circles). The last
hidden state for each word is run through a fully connected layer (rounded rectangle with one circle). The resulting embeddings are given as input to the
Seq2Seq (rounded rectangle with three circles). The ’S’ in the fully connected layer following the Seq2Seq decoder stands for the Softmax function.

each word decomposition through a fully connected layer of
which the number of neurons is equal to the dimension of the
hidden states. This approach produces 300-dimensional word
embeddings. We refer to these embeddings as BPEmb.

2) Tagging Model: Our downstream tagging model is
a Seq2Seq model consisting of a one-layer unidirectional
LSTM encoder and a one-layer unidirectional LSTM decoder
followed by a fully-connected linear layer with a softmax
activation. Both the encoder’s and decoder’s hidden states are
of dimension 1024. The embedded address sequence is fed
to the encoder that produces hidden states, the last of which
is used as a context vector to initialize the decoder’s hidden
states. The decoder is then given a Beginning Of Sequence
(BOS) token as input and, at each time step, the prediction
from the last step is used as input. To better adapt the model
to the task at hand and to facilitate the convergence process, we
only require the decoder to produce a sequence with the same
length as the input address. This approach differs from the
traditional Seq2Seq architecture in which the decoder makes
predictions until it predicts the End Of Sequence token. The
decoder’s outputs are forwarded to the linear layer of which the
number of neurons is equal to the tag space dimensionality.
The softmax activation function computes probabilities over
the linear layer’s outputs to predict the most likely token at
each time step.

B. Attention Architecture

Attention mechanisms are neural network components that
can produce a distribution describing the interdependence
between a model’s inputs and outputs (general attention)
or amongst model inputs themselves (self-attention). These
mechanisms are common in natural language processing
encoder-decoder architectures such as neural machine trans-

lation models [19] since they have shown to improve models’
performance and help address some of the issues recurrent
neural networks suffer from when it comes to dealing with
long sequences.

Attention mechanisms are also exploited for the inter-
pretability of neural networks, where they are considered to
provide insights about the impact of some neural network’s
inputs on its predictions. This use of attention mechanisms has
been contested in [20] because of a lack of consistency with
feature importance measures, among other things. However,
other work has suggested that attention mechanisms provide
a certain degree of interpretability depending on the task at
hand [21] [22]. In this work, we focus on the performance
enhancement of address tagging models using attention.

1) Attention models: The implementation of our attention
models was inspired by [19]. The models’ architecture remains
similar to that of our base models, with some alterations
to the decoding process. Indeed, instead of feeding the last
predicted tag as an input to the decoder at the current time
step i, we compute an input using the encoder’s outputs ~O,
the last decoder hidden state hi−1, and the last predicted tag’s
representation ~t.

We start by computing attention weights as follows:

αi,j =
exp(ai,j)∑
k exp(ai,k)

where

ai,j = p× tanh(Whhi−1 +WoOj)

and Wh, Wo and p are learnable parameters.
Next, we compute a context vector by weighting the en-

coder’s outputs with the obtained attention weights:

~ci =
∑

k αi,kOk

Special Issue on Machine Learning and Natural Language Processing – iJIST, ISSN : 2550-5114
                                                                                                       Vol. 6 - No. 3 - September 2022

http://innove.org/ijist/ 42 



Finally, we obtain the decoder’s input by concatenating the
last prediction ~t with the context vector ~ci. Note that the first
decoder’s input is computed using the last encoder’s hidden
state.

We use this approach with the two aforementioned embed-
ding methods and name the obtained models fastTextAtt and
BPEmbAtt respectively.

C. Domain Adaptation

Domain adaptation is a branch of transfer learning which
aims at applying a model trained on data from a source domain
to data from a target domain which somewhat differs from
one another but still retains a certain degree of similarity.
More specifically, it is a technique used when the input
and output belong to the same space, but the probability
distribution which associates them changes as we move from
one domain to the other [23]. Our objective is to generalize the
performance of address parsing models to countries of which
no data is used at training time. In order to extend our models
to cope with this domain adaptation problem, we enhance our
base approach using domain adversarial neural networks.

1) Domain Adversarial Neural Networks: Domain adver-
sarial neural networks [24] achieve domain adaptation by
appending a second parallel output layer to a neural network
classifier, the purpose of which is to predict the domain of
the network’s input. Since the target domain labels are not
available during training, two losses are computed when the
input belongs to the source domain (i.e. the labels classification
loss and the domain classification loss), whilst only the domain
classification loss is computed when the input belongs to
the target domain. Moreover, the gradient associated with the
domain classification layer is reversed during backpropagation.
This aims to hinder the neural network’s ability to differentiate
between the source and target domains while still learning to
perform well on classifying data from the source domain.

2) Implementation: First of all, we modified our neural
network architecture by adding a domain discriminator in the
form of a fully connected layer with two output neurons which
takes the context vector produced by the Seq2Seq encoder as
input. This layer is preceded by a gradient reversal layer that
reverses the computed gradient sign during backpropagation.
The domain discriminator is followed by a Softmax activation
function, and its loss is computed using a Cross-Entropy
loss function. Secondly, we used the ADANN [25] training
algorithm to train our model since it is designed to enable
multi-domain adversarial training by considering, during the
forward pass of each batch, one domain as a source domain
and another random domain as a target domain, and so on for
each of the available domains; our domains being the countries
for which training data is available. We hope, by using this
approach, to construct models that can learn to parse addresses
from countries with different address formats without making a
significant distinction between. Therefore these models would
perform better on parsing addresses from countries not seen
during its training.

We use this approach with the two aforementioned embed-
ding methods and name the obtained models fastTextADANN
and BPEmbADANN respectively.

V. DATA

A. Complete Address Dataset

Our dataset was built using the open-source data on which
Libpostal’s models were trained and of which we have col-
lected the address data of 61 countries. Twenty countries were
used for multinational training with a sample size of 100,000
addresses per country, while the rest of the samples was left
out as holdout for testing. The other countries’ data was also
left for zero-shot transfer evaluation. Tables I and II show the
number of samples per country in both test sets ordered by
number of examples per country. The color in the table will
be discussed later on.

We introduce eight tags, namely StreetNumber, StreetName,
Unit, Municipality, Province, PostalCode, Orientation, and
GeneralDelivery, as opposed to Libpostal, which utilizes 20
tags. This was motivated by the common presence of the
chosen tags in most of the countries included in our datasets.
Also, it is not guaranteed that all addresses contain each tag
category’s elements since some addresses might not contain
elements of some tag categories. However, all addresses need
to have at least each of the following tags: StreetName,
PostalCode, Municipality and Province. We will refer to this
dataset as the “Complete address” dataset.

Figure 2 shows address samples for different countries
with the corresponding tags. Each color represents one of
the five different patterns present in our dataset [26]. We
also find that some countries’ address format is composed of
different patterns (e.g. Belarus addresses use the second and
fifth patterns). No color is used for these countries.

TABLE I
NUMBER OF SAMPLES PER COUNTRY IN THE HOLDOUT TEST SET FOR

COUNTRIES USED FOR TRAINING THE MODELS.

Country Size Country Size Country Size Country Size

United States 8,000,000 Germany 1,576,059 Poland 459,522 Czechia 195,269
Brazil 8,000,000 Spain 1,395,758 Norway 405,649 Italy 178,848
South Korea 6,048,106 Netherlands 1,202,173 Austria 335,800 France 20,050
Australia 5,428,043 Canada 910,891 Finland 280,219 UK 14,338
Mexico 4,853,349 Switzerland 474,240 Denmark 199,694 Russia 8115

TABLE II
NUMBER OF SAMPLES PER COUNTRY IN THE ZERO-SHOT TEST SET.

Country Size Country Size Country Size Country Size

Belgium 66,182 Slovenia 9773 Réunion 2514 Bangladesh 888
Sweden 32,291 Ukraine 9554 Moldova 2376 Paraguay 839
Argentina 27,692 Belarus 7590 Indonesia 2259 Bosnia 681
India 26,084 Serbia 6792 Bermuda 2065 Cyprus 836
Romania 19,420 Croatia 5671 Malaysia 2043 Ireland 638
Slovakia 18,975 Greece 4974 South Africa 1388 Algeria 601
Hungary 17,460 New Zealand 4678 Latvia 1325 Colombia 569
Japan 14,089 Portugal 4637 Kazakhstan 1087 Uzbekistan 505
Iceland 13,617 Bulgaria 3716 New Caledonia 1036
Venezuela 10,696 Lithuania 3126 Estonia 1024
Philippines 10,471 Faroe Islands 2982 Singapore 968
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11   Pirie   Drive   35   City   of   Hamilton   ontario   L9H6Z6

StreetNumber StreetName Unit Municipality Province PostalCode
Canada

Europaplein          17                1825TL              Alkmaar       Noord-Holland     

StreetName StreetNumber PostalCode Municipality Province
Netherlands

1  copernicus  marg      नई     �द�ी    110001.   �द�ी'

StreetNumber StreetName Municipality PostalCode Province
India

대구광역시          중구           공평로        88        41911

Province Municipality StreetName StreetNumber PostalCode
South Korea

〒   370-0829      群    ⾺     ⾼.  崎    ⾼ 松 町   5-28

Province Province Municipality StreetName StreetNumber
Japan

Fig. 2. Examples of the main address patterns found in the dataset.

B. Incomplete Address Dataset

We also introduce a second dataset based on Libpostal’s
open-source data. It is similar to the Complete address dataset.
It is composed of the same twenty countries used for multi-
national training but with a sample size of 50,000 for training
and 25,000 for holdout evaluation. The dataset consists of
only addresses where each one is missing at least one of
the following four tags: StreetName, PostalCode, Municipality
and Province. We consider an address incomplete if it is
not composed of at least all of the four tags. For example,
the sequence of tags for the address “221 B Baker Street”
is {StreetNumber, Unit, StreetName, StreetName}, and it is
incomplete since the PostalCode and the Municipality tags
are missing. We will refer to this dataset as the “incomplete
address” dataset.

VI. EXPERIMENTS

For our experiments, we trained our six models (fastText,
BPEmb, fastTextAtt, fastTextADANN, BPEmbAtt and
BPEmbADANN) five times each5 for 200 epochs with a batch
size of 512 for the base approach and the attention models and
256 for the ADANN one. An early stopping with a patience of
fifteen epochs was also applied during training. We initialize
the learning rate at 0.1 and use learning rate scheduling to
lower it by a factor of 0.1 after ten epochs without loss reduc-
tion. Our loss function of choice is the Cross-Entropy loss due
to its suitability for the softmax function. The optimization is
done through Stochastic Gradient Descent.

Also, to speed up the convergence, we use teacher forcing
[27], a method that consists of using the ground truth instead
of the previous time step’s prediction as input for the decoder
during training. We do so by randomly sampling part of the
training data at runtime. 80 % of the training datasets were
used to train the models, and 20 % was kept for validation. The

5Using each of the following seeds {5, 10, 15, 20, 25}. When a model did
not converge (a high loss value on train and validation), we retrain the model
using a different seed (30).

architecture and the training of the models were implemented
using Pytorch [28], and Poutyne [29].

A. Evaluation Procedure

We train our six models on our multinational dataset, the
difference between the models being (1) the word embedding
method employed (fastText and BPEmb) and (2) the use of
attention mechanism or domain adaption learning. Each model
has been trained five times, and we report the models’ mean
accuracy and standard deviation on the per-country zero-shot
data. The accuracy for each sequence is computed as the
proportion of the tags predicted correctly by the model. As
such, predicting all the tags for a sequence correctly yields a
perfect accuracy. More precisely, errors in tag predictions have
an impact on the accuracy for a given sequence. However,
the accuracy will not be null unless all the predicted tags for
the sequence are incorrect. These results will be discussed in
section VII.

B. Incomplete Address Evaluation Procedure

Since addresses do not always include all the components,
we will also evaluate four models (fastTextAtt, fastTex-
tADANN, BPEmbAtt and BPEmbADANN) on the incom-
plete addresses dataset introduced in the Subsection V-B. We
hypothesize that an incomplete address can confuse our mod-
els since we use a seq2seq architecture, and the compressed
representation of an incomplete address will not be the same as
the same complete one. For example, the address “221 B Baker
Street London NW1 6XE” is complete and is a typical way to
write an address. But, many addresses are not always in such a
form. Such as the address “221 B Baker Street”, which is the
same as the previous one but without the city and the postal
code. That difference can be more challenging for our models
since postal code is usually a good way to tell the difference
between the pattern shown in Figure 2. We will also evaluate
the performance of two new models, fastTextADANNNoisy
and BPEmbADANNNoisy), trained on the complete and
incomplete addresses dataset to investigate if the addition of
incomplete address help improves performance on that type of
data. These results will be discussed in section VIII.

VII. COMPLETE ADDRESSES RESULTS

In this section, we present and discuss the results of all
our trained models. We first evaluated them on the holdout
addresses dataset, and we evaluated them on the zero-shot
addresses dataset.

A. Multinational Evaluation

Table III presents all the models’ mean accuracy and stan-
dard deviation on the holdout dataset for training countries.
First, we find that South Korea is the only country where a
perfect accuracy was achieved when using byte-pairs embed-
dings (BPemb) or almost all the time (four seeds out of five)
when using fastText embeddings. Since South Korea is the
only country using a different pattern in the training set where
the province and municipality occur before the street name, it
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TABLE III
MEAN ACCURACY AND STANDARD DEVIATION OBTAINED WITH MULTINATIONAL MODELS ON THE HOLDOUT DATASET FOR TRAINING COUNTRIES.

BOLD VALUES INDICATE THE BEST ACCURACY FOR EACH COUNTRY.

Country FastText BPEmb FastTextAtt BPEmbAtt FastTextADANN BPEmbADANN

United States 99.61± 0.09 99.67± 0.09 99.73± 0.02 99.65± 0.23 99.70± 0.03 99.68± 0.16
Brazil 99.40± 0.10 99.42± 0.15 99.58± 0.04 99.42± 0.39 99.53± 0.04 99.42± 0.34
South Korea 99.96± 0.01 100.00± 0.00 99.98± 0.01 100.00± 0.00 99.98± 0.01 100.00± 0.00
Australia 99.68± 0.05 99.80± 0.05 99.77± 0.03 99.78± 0.13 99.76± 0.03 99.77± 0.17
Mexico 99.60± 0.06 99.68± 0.06 99.71± 0.03 99.70± 0.14 99.68± 0.02 99.69± 0.12
Germany 99.77± 0.04 99.89± 0.03 99.85± 0.02 99.90± 0.08 99.84± 0.01 99.91± 0.05
Spain 99.75± 0.05 99.85± 0.04 99.83± 0.02 99.86± 0.09 99.80± 0.02 99.83± 0.11
Netherlands 99.61± 0.07 99.88± 0.03 99.75± 0.03 99.90± 0.07 99.72± 0.02 99.91± 0.05
Canada 99.79± 0.05 99.87± 0.04 99.87± 0.02 99.87± 0.10 99.85± 0.01 99.86± 0.10
Switzerland 99.53± 0.09 99.75± 0.08 99.62± 0.05 99.77± 0.14 99.59± 0.05 99.82± 0.12
Poland 99.69± 0.07 99.89± 0.04 99.80± 0.02 99.90± 0.07 99.78± 0.02 99.92± 0.04
Norway 99.46± 0.06 98.41± 0.63 99.44± 0.11 98.20± 1.13 99.53± 0.04 97.95± 0.44
Austria 99.28± 0.03 98.98± 0.22 99.38± 0.06 98.96± 0.37 99.30± 0.07 99.34± 0.32
Finland 99.77± 0.03 99.87± 0.01 99.83± 0.02 99.86± 0.01 99.82± 0.01 99.84± 0.01
Denmark 99.71± 0.07 99.90± 0.03 99.82± 0.03 99.91± 0.06 99.80± 0.02 99.93± 0.05
Czechia 99.57± 0.09 99.89± 0.04 99.73± 0.02 99.89± 0.10 99.70± 0.02 99.90± 0.06
Italy 99.73± 0.05 99.81± 0.05 99.83± 0.02 99.83± 0.11 99.80± 0.02 99.82± 0.11
France 99.66± 0.08 99.69± 0.11 99.79± 0.04 99.69± 0.22 99.77± 0.03 99.70± 0.17
UK 99.61± 0.10 99.74± 0.08 99.77± 0.05 99.72± 0.20 99.73± 0.03 99.72± 0.20
Russia 99.03± 0.24 99.67± 0.11 99.40± 0.13 99.54± 0.39 99.23± 0.12 99.59± 0.31

Mean 99.61± 0.20 99.68± 0.36 99.72± 0.16 99.67± 0.40 99.70± 0.18 99.68± 0.43

seems that our models might have memorized this particular
pattern. To validate this intuition, we randomly reordered 6000
South Korean addresses to follow either the first (red) or
the second (brown) address pattern (equally divided between
the two). We observe, after this reordering, that the mean
accuracy drops to 28.04 % considering that using a random
tags annotation, we get a 12.29 % accuracy.

It is also interesting to notice that the models’ accuracies
are good when using fastText monolingual word embeddings,
especially on South Korean addresses despite the entirely
different alphabet. These results illustrate that our model,
regardless of the embeddings model, learned the representation
of an address sequence even if the words’ representations are
not native to the language (French vs Korean).

Finally, all our models achieve state-of-the-art performance
on our holdout dataset while using less data than previous ap-
proaches (e.g. Libpostal) and neither pre nor post-processing.
However, at this point, it is difficult to conclude which of
our models is the leading one. In the following subsection,
we investigate the zero-shot performance of our models on
countries not seen during training.

B. Zero-Shot Evaluation

Since training a deep learning model to parse addresses from
every country in the world would require a significant amount
of data and resources, our ongoing work aims at achieving
domain adaptation to be able to train on a reasonable amount
of data and generalize to data from different sources. We begin
by exploring how well our architecture can generalize in a
zero-shot manner. To this end, we test each of our FastText
and BPEmb trained models on address data from countries not
seen during the training. The results are reported in Table IV
ordered by dataset size.

TABLE IV
MEAN ACCURACY (AND STANDARD DEVIATION) PER COUNTRY FOR THE

ZERO-SHOT TRANSFER MODELS (BASE APPROACH).

Country FastText BPEmb Country FastText BPEmb

Belgium 88.14± 1.04 87.29± 1.40 Faroe Islands 74.14± 1.83 85.50± 0.11
Sweden 81.59± 4.53 90.76± 3.03 Réunion 96.80± 0.45 93.67± 0.26
Argentina 86.26± 0.47 88.04± 0.83 Moldova 90.18± 0.79 86.89± 3.01
India 69.09± 1.74 80.04± 3.24 Indonesia 64.31± 0.84 70.28± 1.64
Romania 94.49± 1.52 91.65± 1.21 Bermuda 92.31± 0.60 93.70± 0.35
Slovakia 82.10± 0.98 90.31± 3.88 Malaysia 78.93± 3.78 94.16± 0.49
Hungary 48.92± 3.59 25.51± 2.60 South Africa 95.31± 1.68 96.87± 0.96
Japan 41.41± 3.21 35.33± 1.28 Latvia 93.66± 0.64 74.78± 4.33
Iceland 96.55± 1.20 97.38± 1.18 Kazakhstan 86.33± 3.06 94.12± 1.94
Venezuala 94.87± 0.53 93.05± 2.02 New Caledonia 99.48± 0.15 99.25± 0.19
Philippines 77.76± 3.97 81.95± 8.07 Estonia 87.08± 1.89 77.30± 1.22
Slovenia 95.37± 0.23 97.47± 0.45 Singapore 86.42± 2.36 86.87± 2.01
Ukraine 92.99± 0.70 92.60± 1.84 Bangladesh 78.61± 0.43 82.45± 2.54
Belarus 91.08± 3.08 96.40± 1.76 Paraguay 96.01± 1.23 97.20± 0.35
Serbia 95.31± 0.48 92.62± 3.83 Cyprus 97.67± 0.34 94.31± 7.21
Croatia 94.59± 2.21 88.04± 4.68 Bosnia 84.04± 1.47 84.46± 5.76
Greece 81.98± 0.60 40.97± 14.89 Ireland 87.44± 0.69 86.49± 1.31
New Zealand 94.27± 1.50 99.44± 0.29 Algeria 85.37± 2.05 84.65± 4.47
Portugal 93.65± 0.46 92.68± 1.46 Colombia 87.81± 0.92 89.51± 0.88
Bulgaria 91.03± 2.07 93.47± 3.07 Uzbekistan 86.76± 1.13 75.18± 1.92
Lithuania 87.67± 3.05 76.41± 1.66

First, we observe that the BPEmb model reaches the highest
accuracy most of the time. Indeed, 49 % of the countries
tested in zero-shot transfer reached a mean accuracy of at least
90 % using BPEmb while using fastText only 46 % of the
countries reach that same accuracy. Most of these countries
share either the same address structure or language proximity
with training data. For instance, Venezuela shares the same
address pattern as six other countries in the dataset and also
shares the same language as Mexico, Spain, and the same
Latin root as French. It was also interesting to observe that
for Greece, BPEmb achieved near half the accuracy result as
fastText. We hypothesize that for Greece, fastText is able to
produce better embeddings from subword units to reach this
performance than BPEmb.

In contrast, the lowest results (below 70 %) occur for
countries where the address pattern and the country’s official
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language were not seen in the training data, such as India,
Hungary, and Japan. The last two countries have had the
lowest results of all. This is most likely due to the address
structure (blue), which is the near inverse of the two most
present ones in the training data (red and brown) (Figure 2).
Also, those two countries do not share language root with
any of the ones present in the training data, making the task
difficult for our models. We also see that Kazakhstan, which
uses the same address pattern as Japan, achieves better results.
The main difference is the official language’s (Kazakh and
Russian) presence in the training dataset. Moreover, India
achieves almost 20 % better results than Hungary and Japan,
even if Hindi does not occur in the training dataset. This is
probably due to the use of a nearly identical address pattern
as the first one (red). The only difference being the inversion
of the province and the postal code. It could mean that if
no shared language root is present, a shared address structure
allows a decent parsing of the address (almost 70 %).

Finally, we observe that BPEmp achieves better results than
fastText for 21 out of 41 countries, where most of them are
between 1 % to 20 % better. Considering that nearly 81 %
of the countries reach an accuracy above 80 %, we conclude
that using BPEmb embeddings gives good results for a zero-
shot address parsing task considering that some languages
and address patterns do not occur in the training data. These
results were surprising to us since fastText uses pre-trained
embedding trained on a French corpus. We hypothesize that
fastText can produce better generalization of embeddings
using subword units than BPEmb. This highlights that our
trained model to combine the BPEmb embeddings might have
overfitted to our problem due to the dataset size in contrast
with FastText embeddings.

1) Attention Models: In an attempt to improve our models’
zero-shot performance, the base architecture was augmented
with an attention mechanism as described in Subsection IV-B.
The results of those two models (fastTextAtt and BPEmbAtt)
are compared to their base approach respectively in Table V.
For the model fastTextAtt (left section of the table), we
observe that attention mechanisms improve the performance
for 20 out of 41 countries by more than 1 %. Where 10 out of
41 improves with more than 2 %. Also, 10 out of 41 countries’
accuracies were increased by less than 1 %. However, for the
other countries (11 out of 41), we observe that the accuracy
is less than 0.5 % poorer than the base approach for most
of them. The attention mechanism improved two countries’
accuracies above the 90 % accuracy (Belgium and Lithuania)
and one above the 80 % (Philippines). FastTextAtt achieves
good results for 83 % of the countries (34), almost 52 % of
which (21) are near state-of-the-art performance.

In contrast, the results for the BPEmbAtt model (right
section of the table) are not as good. We observe that results
were be increased by at least more than 1 % for 14 out of
41 countries. While 11 out of 41 saws improve by more
than 2 %. Also, 9 out of 41 countries improved by less
than 1 %. However, for the other countries (20), we observe
that the accuracy is less than 0.5 % poorer than the base

approach for half of them. For the other half, results are
between 1 % and 2 % lower, thus lowering performance for
two countries (India and Bangladesh) below 80 % and one
(Malaysia) below 90 %. Thus, the use of attention mechanism
using byte-pair multilingual embeddings lowers performance
overall, especially since only one country (Estonia) yields
results above the 80 % compare to the base approach.
bpembatt achieve good results for 78 % of the countries (32),
almost 50 % of which (20) is near state-of-the-art performance.

Finally, we observe that in some cases, the use of attention
mechanism can substantially improve performance, such as
Greece where the increase is 4 % for fastTextAtt and near
16 % for BPEmbAtt. We also observe a smaller variance
for both the model using the attention mechanisms, meaning
those models are more stable during training and converge to a
better optimum. Overall, these results show that our attention
mechanisms architecture can generally yield better accuracies
during training.

2) ADANN: In a second attempt to improve our models’
zero-shot performance, the base architecture was augmented
with a domain adaptation approach as described in Subsec-
tion IV-C. The results of those two models (fastTextADANN
and BPEmbADANN) are compared to their attention ap-
proach equivalents in Table V. For both the fastTextADANN
and BPEmbADANN models (left and right section of the table
respectively), we observe similar results.

First, the ADANN algorithm can improve the performance
for a minority (4 and 8 respectively for fastTextADANN
and BPEmbADANN respectively) of the countries by more
than 1 %. A few (2 or 3) out of the 41 improve by more
than 2 % for both models. Also, near a fourth of the 41
countries’ accuracies increased by less than 1 %. For the
other countries (the majority), we observe that for half of
them, the difference is less than 1 % poorer than the attention
approaches, and the other half is a couple of percent poorer.
Sometimes the difference can be as much as 5 % (e.g. Sweden
for fastTextADANN or Estonia for BPEmbADANN). Also,
for both the models, two countries drop below 80 % (Lithuania
and Moldova for fastTextADANN and Philippines and Bosnia
for BPEmbADANN) and for BPEmbADANN Sweden accu-
racy’s drop below 90 %. Thus, the use of domain adaptation
technique during training lowers the performance overall, es-
pecially since only one country for each model (Malaysia and
India respectively) yields results above 80 % compared to the
base approach and one above 90 % (Kazakhstan and Malaysia
respectively). Although, overall, the two models achieve good
results for nearly 80 % of the countries, almost 50 % of which
are near state-of-the-art performance. However, these results
are less good than models using attention mechanisms in many
cases.

Second, we observe that our model does not seem to
have fit the training data as much as possible, as shown in
Table VII. This table presents the multinational models’ mean
accuracy (and a standard deviation) on the holdout dataset
for fastTextADANN. Nevertheless, we are surprised by our
results since the ADANN algorithm is a transfer learning
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TABLE V
MEAN ACCURACY (AND STANDARD DEVIATION) PER COUNTRY FOR ZERO-SHOT TRANSFER MODELS - BASE APPROACH VERSUS ATTENTION MODELS.

BOLD VALUES INDICATE THE BEST ACCURACY FOR EACH EMBEDDINGS TYPE.

Country FastText FastTextAtt BPEmb BPEmbAtt Country FastText FastTextAtt BPEmb BPEmbAtt

Belgium 88.14± 1.04 90.01± 1.59 87.29± 1.40 89.35± 0.48 Faroe Islands 74.14± 1.83 74.00± 1.00 85.50± 0.11 85.89± 1.08
Sweden 81.59± 4.53 85.73± 2.30 90.76± 3.03 90.64± 5.07 Réunion 96.80± 0.45 96.86± 1.27 93.67± 0.26 94.19± 0.27
Argentina 86.26± 0.47 87.76± 0.71 88.04± 0.83 87.45± 2.57 Moldova 90.18± 0.79 91.25± 0.84 86.89± 3.01 89.99± 2.22
India 69.09± 1.74 71.94± 2.06 80.04± 3.24 79.73± 3.65 Indonesia 64.31± 0.84 65.98± 0.97 70.28± 1.64 72.05± 2.81
Romania 94.49± 1.52 96.01± 0.73 91.65± 1.21 93.01± 0.84 Bermuda 92.31± 0.60 92.82± 0.68 93.70± 0.35 93.82± 0.08
Slovakia 82.10± 0.98 84.16± 2.60 90.31± 3.88 92.60± 4.64 Malaysia 78.93± 3.78 75.79± 2.77 94.16± 0.49 89.06± 5.22
Hungary 48.92± 3.59 48.48± 4.55 25.51± 2.60 24.00± 1.09 South Africa 95.31± 1.68 94.82± 2.79 96.87± 0.96 96.83± 2.11
Japan 41.41± 3.21 42.63± 4.13 35.33± 1.28 42.81± 5.73 Latvia 93.66± 0.64 93.04± 0.85 74.78± 4.33 72.14± 2.00
Iceland 96.55± 1.20 96.51± 0.50 97.38± 1.18 96.77± 0.43 Kazakhstan 86.33± 3.06 89.52± 4.82 94.12± 1.94 92.60± 5.40
Venezuela 94.87± 0.53 95.37± 0.45 93.05± 2.02 93.79± 3.07 New Caledonia 99.48± 0.15 99.52± 0.08 99.25± 0.19 99.38± 0.34
Philippines 77.76± 3.97 82.87± 5.17 81.95± 8.07 81.30± 3.50 Estonia 87.08± 1.89 89.29± 2.49 77.30± 1.22 80.24± 5.49
Slovenia 95.37± 0.23 95.74± 0.44 97.47± 0.45 97.04± 0.38 Singapore 86.42± 2.36 86.40± 2.59 86.87± 2.01 87.53± 1.30
Ukraine 92.99± 0.70 93.45± 0.76 92.60± 1.84 93.52± 1.81 Bangladesh 78.61± 0.43 76.48± 1.06 82.45± 2.54 79.01± 2.18
Belarus 91.08± 3.08 94.43± 3.59 96.40± 1.76 94.44± 4.19 Paraguay 96.01± 1.23 96.68± 0.32 97.20± 0.35 96.25± 1.17
Serbia 95.31± 0.48 95.68± 0.33 92.62± 3.83 93.09± 1.81 Cyprus 97.67± 0.34 97.57± 0.31 94.31± 7.21 98.32± 0.37
Croatia 94.59± 2.21 96.40± 0.57 88.04± 4.68 90.66± 3.76 Bosnia 84.04± 1.47 87.42± 1.95 84.46± 5.76 88.61± 5.06
Greece 81.98± 0.60 85.00± 1.61 40.97± 14.89 56.01± 10.98 Ireland 87.44± 0.69 87.69± 0.95 86.49± 1.31 87.56± 3.01
New Zealand 94.27± 1.50 95.91± 1.41 99.44± 0.29 98.21± 1.37 Algeria 85.37± 2.05 86.03± 1.55 84.65± 4.47 85.08± 2.50
Portugal 93.65± 0.46 94.54± 0.67 92.68± 1.46 93.33± 0.59 Colombia 87.81± 0.92 89.09± 0.64 89.51± 0.88 88.32± 2.55
Bulgaria 91.03± 2.07 90.87± 2.63 93.47± 3.07 92.97± 3.66 Uzbekistan 86.76± 1.13 87.36± 0.74 75.18± 1.92 77.52± 2.62
Lithuania 87.67± 3.05 90.88± 1.73 76.41± 1.66 76.16± 1.54

technique. An advantage of ADANN is that the network’s
weights have strong incentives to be subject-agnostic, meaning
that the learned representation extracted from the network can
be thought of as general features for the prediction layer [25].
We argue that it is more challenging to train models using
the ADANN algorithm since the time needed for one epoch is
nearly 5 hours. Meaning that the expected time to train for the
200 epochs is near 41 days per model (and we train five seeds)
compared to a couple of days for the attention models. So we
did not have much opportunity to fine-tune our model. We also
hypothesize that the domain choice (i.e. the country) might
be too granular since many countries have similar patterns
or similar language, making the task more difficult. An idea
of improvement could be to use more definitions for the
domain, such as the language and the address pattern type.
For example, we could use a categorical variable representing
the address pattern number and a categorical variable for the
language. That way, we could help guide the training into a
better understanding of the context of an address which is not
necessary the country but rather the language and the pattern.

Finally, on average, performance is similar between the
attention and ADANN approaches, but FastText models per-
form slightly more. They are, on average, 2 % better than
the BPEmb approaches. For example, fastTextADANN yields
in average 86.45 ± 12.13 % accuracy across the zero-shot
countries and BPEmbADANN yields a 85.32 ± 15.31 %.
Again, both BPEmb models have higher variance than FastText
one. These results show that BPEmb models’ performance
tends to be more variable and more sensitive to changes in
seeds.

VIII. MISSING VALUES HANDLING

In this section, we aim to evaluate and improve the results
of our four best models, fastTextAtt, BPEmbAtt, fastTex-
tADANN and BPEmbADANN on the incomplete address
data. As presented in Subsection V-B, we introduce an in-

complete address dataset where the addresses do not always
include all the components. Table VIII presents the results of
the four models evaluated on the incomplete holdout dataset
without any prior training on incomplete addresses. Since we
observe that performances for all of the training countries are
lower by 20 % to 40 % than previous scores, we choose to
only evaluate our models on the countries seen during training
(holdout). The lower accuracy is South Korea for both the
models (nearly over the 45 % accuracy)(will be discussed in
more detail later). We also observe that the ADANN approach
yields better results (12 out of 20) and is better by less than
1 % on average (last row). Finally, we observe that the BPEmb
approach still has higher variance than the FastText one since
we have observed some seeds converging to suboptimal loss.
Nevertheless, we observe that despite poorer performance on
zero-shot evaluation, the ADANN approaches yield better
results on incomplete addresses than attention approaches.
We hypothesize that ADANN models have not overfitted the
representation of an address structure seen in the training
and more on the general features of address structures and
domain type (e.g. the country and language). Also, knowing
the domain, and indirectly the address structure and language,
makes it easier to parse an address when incomplete.

To improve our models’ incomplete addresses performance,
we have trained two new models using the complete and
incomplete addresses datasets. This merged dataset consists
of 150,000 addresses per country using the same settings
as described in section VI. We choose to only train the
two best models on incomplete addresses, fastTextADANN
and BPEmbADANN. We refer to these new models by
fastTextADANNNoisy and BPEmbADANNNoisy where the
difference between the two is the embeddings. Table IX
present the mean accuracy and a standard deviation of our
two models tested on the incomplete dataset.

First, we observe that using incomplete addresses during
training substantially improves the accuracy for all the coun-
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TABLE VI
MEAN ACCURACY (AND STANDARD DEVIATION) PER COUNTRY FOR ZERO-SHOT TRANSFER MODELS - ATTENTION MODELS VERSUS ADANN MODELS.

Country FastTextAtt FastTextADANN BPEmbAtt BPEmbADANN Country FastTextAtt FastTextADANN BPEmbAtt BPEmbADANN

Belgium 90.01± 1.59 90.90± 3.76 89.35± 0.48 88.74± 0.59 Faroe Islands 74.00± 1.00 69.76± 2.08 85.89± 1.08 85.34± 0.20
Sweden 85.73± 2.30 80.99± 3.78 90.64± 5.07 89.65± 1.08 Réunion 96.86± 1.27 96.48± 0.96 94.19± 0.27 93.99± 0.59
Argentina 87.76± 0.71 87.72± 1.33 87.45± 2.57 87.13± 2.65 Moldova 91.25± 0.84 89.87± 0.56 89.99± 2.22 88.67± 1.66
India 71.94± 2.06 70.30± 1.22 79.73± 3.65 81.12± 2.97 Indonesia 65.98± 0.97 65.42± 0.75 72.05± 2.81 71.71± 2.79
Romania 96.01± 0.73 96.22± 1.11 93.01± 0.84 92.58± 1.53 Bermuda 92.82± 0.68 92.02± 0.52 93.82± 0.08 95.02± 0.58
Slovakia 84.16± 2.60 81.93± 1.80 92.60± 4.64 91.14± 3.81 Malaysia 75.79± 2.77 83.48± 3.42 89.06± 5.22 90.52± 4.27
Hungary 48.48± 4.55 46.42± 5.62 24.00± 1.09 23.54± 1.69 South Africa 94.82± 2.79 93.09± 2.35 96.83± 2.11 96.02± 1.55
Japan 42.63± 4.13 43.88± 1.26 42.81± 5.73 38.64± 5.26 Latvia 93.04± 0.85 90.64± 1.26 72.14± 2.00 71.92± 2.60
Iceland 96.51± 0.50 96.18± 0.35 96.77± 0.43 97.15± 0.64 Kazakhstan 89.52± 4.82 92.00± 1.36 92.60± 5.40 96.49± 1.94
Venezuela 95.37± 0.45 95.02± 0.76 93.79± 3.07 94.79± 0.57 New Caledonia 99.52± 0.08 99.52± 0.11 99.38± 0.34 99.40± 0.26
Philippines 82.87± 5.17 83.81± 4.95 81.30± 3.50 74.94± 5.57 Estonia 89.29± 2.49 86.72± 4.00 80.24± 5.49 85.84± 4.87
Slovenia 95.74± 0.44 95.75± 0.53 97.04± 0.38 96.77± 0.57 Singapore 86.40± 2.59 84.96± 2.84 87.53± 1.30 84.70± 1.86
Ukraine 93.45± 0.76 93.70± 0.28 93.52± 1.81 94.17± 2.30 Bangladesh 76.48± 1.06 76.80± 1.21 79.01± 2.18 78.68± 3.96
Belarus 94.43± 3.59 96.05± 0.57 94.44± 4.19 98.15± 0.97 Paraguay 96.68± 0.32 97.00± 1.08 96.25± 1.17 96.28± 0.96
Serbia 95.68± 0.33 95.75± 0.25 93.09± 1.81 93.45± 1.44 Cyprus 97.57± 0.31 97.39± 0.38 98.32± 0.37 97.53± 1.49
Croatia 96.40± 0.57 94.98± 2.01 90.66± 3.76 91.37± 4.39 Bosnia 87.42± 1.95 84.95± 3.47 88.61± 5.06 79.11± 3.07
Greece 85.00± 1.61 83.18± 3.31 56.01± 10.98 57.47± 7.75 Ireland 87.69± 0.95 87.44± 0.20 87.56± 3.01 88.42± 0.97
New Zealand 95.91± 1.41 93.60± 2.42 98.21± 1.37 99.13± 0.37 Algeria 86.03± 1.55 83.07± 3.85 85.08± 2.50 83.64± 2.60
Portugal 94.54± 0.67 94.53± 0.41 93.33± 0.59 91.07± 1.26 Colombia 89.09± 0.64 87.76± 1.30 88.32± 2.55 88.99± 1.83
Bulgaria 90.87± 2.63 90.40± 1.10 92.97± 3.66 93.93± 2.59 Uzbekistan 87.36± 0.74 86.23± 2.18 77.52± 2.62 73.83± 2.92
Lithuania 90.88± 1.73 88.58± 2.35 76.16± 1.54 77.26± 2.54

TABLE VII
MEAN ACCURACY (AND STANDARD DEVIATION) FOR MULTINATIONAL

MODELS ON HOLDOUT DATASET FOR TRAINING COUNTRIES -
FASTTEXTATT VERSUS FASTTEXTADANN.

Country FastTextAtt FastTextADANN Country FastTextAtt FastTextADANN

United States 99.73± 0.02 99.70± 0.03 Poland 99.80± 0.02 99.78± 0.02
Brazil 99.58± 0.04 99.53± 0.04 Norway 99.44± 0.11 99.53± 0.04
South Korea 99.98± 0.01 99.98± 0.01 Austria 99.38± 0.06 99.30± 0.07
Australia 99.77± 0.03 99.76± 0.03 Finland 99.83± 0.02 99.82± 0.01
Mexico 99.71± 0.03 99.68± 0.02 Denmark 99.82± 0.03 99.80± 0.02
Germany 99.85± 0.02 99.84± 0.01 Czechia 99.73± 0.02 99.70± 0.02
Spain 99.83± 0.02 99.80± 0.02 Italy 99.83± 0.02 99.80± 0.02
Netherlands 99.75± 0.03 99.72± 0.02 France 99.79± 0.04 99.77± 0.03
Canada 99.87± 0.02 99.85± 0.01 UK 99.77± 0.05 99.73± 0.03
Switzerland 99.62± 0.05 99.59± 0.05 Russia 99.40± 0.13 99.23± 0.12

tries. We also observe that the fastTextADANNNoisy is the
leading model across the board with the best accuracy on all
the twenty countries, where results are nearly always more
than 98 % in accuracy. In contrast, we observe that, again, de-
spite using an embeddings layer to learn the representation of
the byte-pairs embeddings (BPEmb), BPEmbADANNNoisy
shows poor results compare to fastTextADANNNoisy. Results
are, on average, nearly 6 % worse and have a higher variance
of more than the double, with results as low as 84 % (which
is lower than some results observe in zero-shot evaluation).
Again, this shows that the trained embeddings layer is over-
fitting or that the byte-pair embeddings are not well suited for
address (such as the embeddings of postal code). This also
could mean that the French fastText embeddings approach to
construct out-of-vocabulary embeddings are more generalized
than the one that we retrain using multi-lingual embeddings.

Second, it is interesting to note that even with a relatively
large number of incomplete addresses in the training dataset
(50,000), we did not achieve scores as good as seen with the
complete dataset (Table III). Results are in average of 98 %
an near 93 % for fastTextADANN and BPEmbADANN re-
spectively. Also, accuracies on the complete addresses holdout
dataset are nearly as good as those presented in Table III. We
observe similar results for most of the training countries with
a difference of 0.5 % lower.

Finally, we can see that the worse results for both models are
for South Korea. These results contrast with the nearly perfect
score observed for all the models in Table III. This highlights
our hypothesis (Subsection VII-A) that our model has mem-
orized the particular pattern of South Korea during training
for complete address. However, since we also have trained
using incomplete addresses, some incomplete addresses are
now not so different from the other address patterns, confusing
our models. For example, if we remove the tags Province
and Municipality of an address, it can be in 4 of the five
patterns making more harder for our models. This shows that
our models have overfitted for that case, and adding noise
in the training data helps reduce that overfitting but lowers
the accuracy. We also observe that using a domain adversarial
technique substantially improves performance for that specific
case where we observe the best improvement with the accuracy
nearly doubling.

IX. CONCLUSION

We estimate that we have reached our first objective,
which was to build a single model capable of learning to
parse addresses of different formats and languages using a
multinational dataset and subword embeddings. Indeed, all
our approaches achieve accuracies around 99 % on all the
twenty countries used for training. Our experiments with
zero-shot transfer learning also yielded interesting results.
First, our baseline approaches obtain good results achieving
near 50 % of state-of-the-art performance. Second, using an
attention mechanism helps to improve our results and could
also provide insights about the address elements on which
the model focuses to make a tag prediction. However, this
analysis is left as future work. Third, our experiments indicate
that using a domain adversarial training algorithm does not
necessarily improve our results on countries not seen during
training. However, they bring a significant contribution on
incomplete addresses. Finally, we tested some of our models
on incomplete addresses to evaluate their performance on
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TABLE VIII
MEAN ACCURACY (AND STANDARD DEVIATION) FOR MULTINATIONAL MODELS WITHOUT ANY PRIOR TRAINING ON INCOMPLETE DATASET.

Country FastTextAtt FastTextADANN BPEmbAtt BPEmbADANN

United States 68.59± 2.61 65.57± 0.80 66.14± 3.88 67.94± 4.94
Brazil 57.00± 2.41 57.39± 3.63 55.01± 3.90 51.10± 4.08
South Korea 45.91± 4.22 46.28± 2.29 49.84± 8.17 35.85± 5.32
Australia 75.90± 1.28 76.02± 0.36 77.18± 0.80 76.49± 1.56
Mexico 61.52± 2.42 59.88± 2.83 61.25± 1.42 58.93± 6.36
Germany 48.39± 1.40 50.32± 6.96 58.98± 0.86 58.62± 3.31
Spain 70.74± 1.26 72.39± 1.13 79.51± 0.49 81.05± 1.17
Netherlands 59.72± 7.54 63.74± 3.47 75.34± 1.32 77.39± 3.52
Canada 72.77± 0.76 71.04± 1.98 73.00± 2.51 81.29± 3.22
Switzerland 64.13± 6.21 62.66± 6.31 73.08± 0.89 72.55± 3.22
Poland 43.99± 3.35 47.04± 4.06 48.50± 1.08 54.47± 4.73
Norway 64.69± 9.77 62.67± 8.64 76.43± 1.62 78.28± 4.04
Austria 69.33± 6.67 69.21± 5.21 77.69± 1.08 78.56± 2.39
Finland 57.94± 8.91 60.83± 6.98 74.65± 1.36 76.31± 3.46
Denmark 56.94± 3.24 55.54± 5.48 65.32± 2.40 63.73± 3.04
Czechia 61.16± 3.21 64.40± 2.91 72.58± 1.72 74.79± 3.53
Italy 66.42± 2.49 71.16± 1.67 73.89± 0.77 76.33± 1.46
France 70.15± 0.88 73.14± 2.38 71.91± 3.46 77.45± 1.08
UK 53.63± 1.28 54.58± 1.24 51.27± 1.96 53.62± 3.30
Russia 58.41± 1.12 57.94± 0.99 58.80± 5.21 61.91± 2.86

Mean 61.37± 8.65 62.09± 8.41 67.02± 9.91 67.83± 12.15

TABLE IX
MEAN ACCURACY (AND STANDARD DEVIATION) FOR MULTINATIONAL MODELS TRAINED ON COMPLETE AND INCOMPLETE DATASETS AND EVALUATED

ON THE INCOMPLETE DATASET FOR TRAINING COUNTRIES. BOLD VALUES INDICATE THE BEST ACCURACY FOR EACH COUNTRY.

Country FastTextADANN FastTextADANNNoisy BPEmbADANN BPEmbADANNNoisy

United States 65.57± 0.80 97.88± 2.04 67.94± 4.94 92.12± 3.60
Brazil 57.39± 3.63 98.39± 1.90 51.10± 4.08 89.57± 6.46
South Korea 46.28± 2.29 92.25± 3.72 35.85± 5.32 84.58± 9.86
Australia 76.02± 0.36 98.86± 1.46 76.49± 1.56 93.32± 5.75
Mexico 59.88± 2.83 97.56± 1.63 58.93± 6.36 88.79± 5.12
Germany 50.32± 6.96 99.20± 0.74 58.62± 3.31 96.79± 2.05
Spain 72.39± 1.13 98.24± 1.82 81.05± 1.17 90.23± 7.02
Netherlands 63.74± 3.47 98.65± 0.98 77.39± 3.52 97.21± 1.77
Canada 71.04± 1.98 97.88± 2.65 81.29± 3.22 91.93± 3.74
Switzerland 62.66± 6.31 99.03± 0.78 72.55± 3.22 97.12± 1.52
Poland 47.04± 4.06 99.28± 0.52 54.47± 4.73 97.89± 1.80
Norway 62.67± 8.64 99.35± 0.54 78.28± 4.04 98.25± 1.06
Austria 69.21± 5.21 99.10± 1.16 78.56± 2.39 94.74± 2.88
Finland 60.83± 6.98 98.97± 0.64 76.31± 3.46 98.75± 0.57
Denmark 55.54± 5.48 97.38± 2.56 63.73± 3.04 92.15± 3.77
Czechia 64.40± 2.91 98.14± 1.74 74.79± 3.53 93.75± 3.79
Italy 71.16± 1.67 98.82± 1.15 76.33± 1.46 94.49± 3.72
France 73.14± 2.38 98.98± 1.32 77.45± 1.08 91.10± 6.85
UK 54.58± 1.24 96.01± 4.75 53.62± 3.30 84.95± 7.63
Russia 57.94± 0.99 96.05± 4.05 61.91± 2.86 86.71± 5.71

Mean 62.09± 8.41 98.00± 1.62 67.83± 12.15 92.72± 4.22

such data. We also improved performance by using some
incomplete addresses during training improved performance.
These results provide insights into the direction that our future
work should take. It would be interesting to explore how other
subword embeddings techniques, such as character-based ones
[30], would perform on the multinational address parsing task.
Additional qualitative analysis of the results would also be
required to investigate the models’ typical errors further.
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