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On the performance of non-coherent CFAR
detectors in sea-clutter: A comparison study

Zakia Terki, Amar Mezachend Fouad Chebbara

Abstract—In radar systems, detection performance
depends on assumed target and clutter statistical
distributions. The probability of detection is shownto be
sensitive to the degree of estimation accuracy oflutter
levels. In this work, the performances of non-cohant logt-
CFAR, zlog(z)-CFAR and Bayesian-CFAR detectors are
investigated using both simulated and real data. Tiee
clutter disturbances are considered named log-nornia
Weibull and Pareto type Il. Based on simulated data
existing CFAR algorithms provide fully CFAR decisin
rules. From IPIX real data, the dependence of thealse
alarm probability associated to each detector is atlied.
With different range resolutions, it is shown that the
Bayesian-CFAR algorithm exhibits a small deviatiorof the
false alarm probability.

Index Terms—Radar, Sea-clutter, logt-CFAR, zlog(z)-
CFAR, Pareto type Il model, Bayesian-CFAR.

|. INTRODUCTION

The two parameters log-normal, WeibuK, and
Pareto laws have been offered as models for the
amplitude of both land and sea-cluttgt-4]. More
recently, compound distribution with trimodal dist
texture law has been added to yield a fairly good
description of empirical datd5]. Adaptive CFAR
detectors are developed to overcome the increasieeof
false alarm number due to the use of conventional
detectors with fixed thresholds. Moreover, if wrong
clutter model or inappropriate clutter level estianais
used, such false alarm problem can not be resdbjed
In reality, the phenomenon complexity of radiation
scattered from turbulent or rough surface and dlak bf
explicit solutions of underling algorithms have cala
negative impact on the development of optimal CFAR
detectors.

In terms of sea-clutter model type, several authors
have considered different decision rules that are
independent of true clutter paramet§rs9]. From [3],
the logt-CFAR maintains the CFAR property if

The detection performance of maritime radars is independent radar returns follow log-normal or Wéib

restricted by the unwanted sea-echo or cliiterRadar
clutter modeling is a serious research issue iffi¢he of
targets detection and track applications. Althoubé
number of these target-like data is small, they cayse
false alarm and perturb the target detection. Rigia

population. Recently, Gourét al proposed in[7] the
zlog(z)-CFAR detector for Weibull background. This
procedure provides similar results with respectthe
well known ML-CFAR algorithm given if4], but witha
small computation time. Some CFAR detectors

radar signal processing algorithms including CFAR operating in homogeneous and heterogeneous Pareto

(constant false alarm rate) detectors are constiuoh

type Il clutter are presented when the shape paesroe

the basis of the best selection of background eslutt the scale parameter of the Pareto type Il modehdsvn
model [2]. Development of radar systems encourages@ Ppriori [8]. If these parameters are unknown, an

researchers to use theoretical heavy tailed protyabi

alternative procedure based upon the Bayesian apipro

density functions (pdf) that are found in the open iS introduced in which a modified decision rule is

literature of statistics and mathematics. Nowaddalys,
Rayleigh distribution becomes a special case ofssea
reverberation data, because there is a restrictfotine
application of a central limit theorem.
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obtained in integral forrfD].

In summary, we observe that the previous work
based on the Bayesian framework did not show
performances comparisons between the Bayesian-CFAR
detector with their corresponding logt-CFAR and
zlog(z)-CFAR detectors using real data. In thiskydine
clutter is assumed to be log-normal, Weibull orefar
type Il distributed. The dependence of the falsamal
probability is presented. From simulated data, CFAR
detectors provide fully CFAR decision rules. FrofiX
(Intelligent Pixel processing X-band) real data hwit
different range resolutions, it is shown that trey&sian-
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CFAR algorithm exhibits a small deviation of thdséa
alarm probability.

The paper is organized as follows. Section 2
summarizes three statistical distributions charagtey

radar sea echoes. In Section 3, full CFAR detectors

related to the log-normal, Weibull and Pareto type
distributions are given. After giving partial CFAR
detectors in Pareto type Il clutter in Section dtedtion

performances of underling CFAR algorithms are then

compared. Finally, main conclusions are outlined in
Section 5.

II. SEA-CLUTTER MODELS

In modern high resolution radar, the clutter (sea-

clutter, weather clutter or land clutter) returnaymmot
follow the Rayleigh model, since the amplitude
distribution develops a “larger” tail that may irase the
false alarm rate. As an alternative, compound Ganss
distributions have been studied to fit sea radatte[7].

In the following, three popular distributions thate

considered for maritime targets CFAR detection are

presented.

A. Log-normal model

The log-normal distribution best describes land
clutter at low grazing angles. It also fits seatteluin the
plateau regiofi3, 10]. The pdf of the amplitudX is

p(x) =—=
ox\ 27T 20°

_ 2
oxg - N #)] x>0 (1)
where y and o are the median and the standard
deviation of the random variable ) (fespectively.

B. Weibull model

The Weibull pdf is used to model sea-clutter at low
grazing angles (less than five degrees) for projpaga
frequencies vary between 1 and 10GHz. It is detethi
by the slope parametea and a median scatter
coefficientg, , and is given by4, 10].

c-1 c
c( x X
=22 1211, x>0 (2
o0=5[2) o (3]} w0 @
wherec=1/a is the shape parameter ahd= 7, °is the

scale parameter.

C. Pareto type Il model

The Pareto disturbance is considered as a possildel

to analyze data sets with very heavy tail, suclses
clutter measurements that have heavy tail. Thet®are
type Il pdf is obtained if the texture componentdas
the inverse gamma lay8, 9]. The latter describes the
variations of the local reflected power due to titteng
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of the illuminated area. The statistics of a Pareto
distributed random variabblehave been described [i8]
by the probability density function as

ap”

——, x>0
(X+ﬁ)a+1

p(x) = @)

where a is the shape parameter an the scale

parameter. For high resolution sea clutters, thepsh
parametera is typically in the range .2 < a < «,
where a close to 2.1 represents a very spiky clutter and
a - o corresponds to thermal noise (Rayleigh clutter).

Ill. RELATED CFAR DETECTORS

Radar target detection is usually modeled by binary
hypothesis test. The observed siggalinder the two
hypotheses, Hfor target present andyHbr target absent
(clutter only), is given by

{Hl: y=s+cC @

H,:y= ¢
wherey, sandc are complex numbers.

A. Logt-CFAR detector

The decision rule associated to this detection guoe

is independent of true values of the clutter model
parameters and is suitable for log-normal or Weibul
background3]. The test is

Hi

> A
oglx.) 16

Ho

()

whereX, =|y| is the magnitude of the cell under test

(CUT), 1 is the threshold multiplierjz andg are the

estimated mean and standard deviation of the random
variable logk).

B. zlog(z)-CFAR detector

The forthcoming adaptive threshold is also givenaas
function of estimated shape and scale parameters of
Weibull clutter. The coefficientr is used to fix the
desired value of the false alarm probabilRy,

X, =br"* (6)

From[7], ¢ and bare obtained by a flexible approach
based on the interpolation method
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=2 w(¢)-¢)

o

whereN is the size of the CRP (clutter range profile) and
z//() the Psi (digamma) function.

C. Bayesian-CFAR detector

The Bayesian method is one of the best technigoes f
obtaining decision rules with a CFAR property. This
method provides the flexibility of extracting the
posterior decision rule from its respective posteri

distribution. It is considered here for the casewimich

both Pareto type Il parameters in (3) are unknown.

According to[9], the Bayesian based CFAR detector is
constructed by means of steps below:

Step 1: Calculate the natural logarithm of (3).

Step 2: Determine the Fisher information matrix.
Step 3: Calculate the Jeffreys prior distribution.

Step 4: Obtain the joint density of the CRP.

Step 5: Calculate the joint density of the Pareto
distributional parameters, conditioned on the CRP.
Step 6: Calculate the Bayes predictive dgnsi

Step 7: Calculate theg, expression as a function of

the thresholdr and samplesy, i=1, ...N.

To compute théPg,, triple integrals are considerdd].
Hence

©
FA_I

T

x, )f (&, B)daddx,
®)

T f(x |a',6’ a,B%, %, ...

Oty 8

Wheref(zo|a',,6’) is the density of the CUT conditioned

on the clutter parameterfs(a',[?|x1,x2 ,...,xN) is the

posterior density of the parametersa and
[ conditioned on the CRP andf(a,,B) is the prior

distributions of the clutter parameters. Fr¢@j, it is
demonstrated that tH&-, is independent ofr and 3 .
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l[Iog 19+1)+ Zlog o +1)} do
+1)

Nwl
[]e+y

N

[Zlog o +1)}

(9)

Consequently, one can conclude that the Bayesgtriste
to reject H if the following test statistic is negatiye].
From (9), 7 is replaced byX, and he threshold is
obtained numerically as

XHWQ(C‘KO +1)+Z:)log(m +1)T (10)
- P;{ilog(m +1)Hd<o

The decision rule can also be written in the form

Hy

—T(zl,z2 ,...,zN):O

Ho

(11)

IV. DETECTION COMPARISONS

In this section, we conduct firstly several Monte-
Carlo simulations as well as IPIX real data in ortte
evaluate the detection performance and the faksemal
properties of CFAR detectors given [, 4, 7-9] For
instance, the target of interest fluctuates acogrdo
Swerling 1 model. For comparison purposes, three
partial CFAR detectors are considered for simulalatzh

(8].
A. Partial GM-CFAR detector (knows)

Under the assumption of iid (independent and ideityi
distributed) Pareto type Il distributed samplese th
decision rule of the GM-CFAR (geometric mean-
CFAR) detector is given in terms ¢

H1 ;
X,
X, ,/3 1+50 | -1 12
m( ﬁj } ¢
Ho

wherer = P’" —1 and the correspondirig:, yields
R, =(L+7)" (13)
40
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B. Partial OS-CFAR detector (knoysh)

In the presence of outliers, the output of the reafee
window are sorted in increasing order. TK& order
statisticX, is chosen to estimate the clutter power. From
[8], one concludes that the resulting OS-CFAR (order
statistic-CFAR) detector is also dependenjfof

x A1+ 2w 1 (14)
0 < B
Here, the equivale®g, formula is
| —
b oo N F(N-k+7+1) (15)

PO (N-K) T(N+7+1)

Where 7 is computed numerically.

C. Partial OS-CFAR detector (knowm)

In this case, the decision rule for knowmis given by

(8]

(16)

where 1 is determined via numerical inversionky, [8]

PFA = k(

D. Ideal detector (knowa andS )

N
k

]f (1—40)“<d“‘k(1+ T(¢; —lnadco 17)

0

In order to provide an upper bound on detector
performance, a linear detector with fixed threshidd
considered

(18)

E. Detection using simulated data

In this subsection, simulated Pareto type Il chuge

considered to examine CFAR detectors given by (12),

(14), (16) and (18). To do thisN+1 samples are
generated by means of the following Matlab function

X = Bexp(exprn{% NN +1D -0

In the forthcoming outcomes, detectors (14) and &6
denoted by OS-CFAR1 and OS-CFAR2 respectively.
Figure. 1depictsPp values against th8CR (signal-to-
clutter ratio) for N 16, k=3N/4,a =2.7241and

(19)
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L =a-1. As expected, the Bayesian-CFAR detector

exhibits the lowest detection performance, becdhse
two parameters are unknown which provide an ewor f
clutter level estimates. N = 32, the performances of all
detectors are increased and the Bayesian-CFARtdetec
has always minimuniPy values as shown iRigure. 2.
To illustrate the performance comparisorgainst
interfering targets situation, we insert in leadiagd
lagging windows two secondary targets Wi@R = 5dB
(Interfering-to-clutter ratiofor N = 16 as presented in
Figure. 3 The degradation of GM-CFAR and Bayesian-
CFAR detectors is remarkable. If two strong intenfg
targets withICR = 10dB are injected in the CRP which
creates non-homogeneous clutter, the Bayesian-CFAR
detector offers also worst results as showsrigure. 4.
These attenuations Py values are due to the estimation
errors of the clutter power in the CUT from non-
identically distributed samples.
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Figure. 1Pp versusSCRof CFAR algorithms in Pareto type Il clutter
with N = 16,k=3N/4, Pea= 10°%, 0 = 2.724Jand S =a —1.

F. Detection using real data

The IPIX real data is now used to illustrate tha
values in terms of the threshold scale factor, eang
resolutions and antennas polarizations. IPIX is
experimental X-band search radar, capable of dual
polarized and frequency agile operatidfie focus our
analysis on the datasets 84, 85 and 86 which quones
to the range resolutions 30m, 15m and 3m respégtive
Characteristic features of the IPIX radar are giwen
[11]. In this part, the magnitude (envelop) of real data
used as the input of each detector.

For cases of HH polarization, range resolutions of
3m, 15m and 30m with a linear detectdétigure. 5
presents three curves &%, values against the scale

41



Special Issue on Smart Cities, Optimization and Modeling of Complex Systems—iJIST, ISSN : 2550-5114
Vol. 6 - No. 1 - February 2022

factor, r . Here, thresholds given by (5) and (6) are used.
Clearly, the CFAR property is not maintained imtsrof
range resolutions. This implies that log-normal and
Weibull distributions have not the ability to flPIX data

for different range resolution#f the Bayesian-CFAR is
applied to these scenarios of the data, resulBpg
values are comparabkes depicted irFigure. 6 Thus,
one concludes that the Pareto type Il is well sufte
IPIX data. Now we change the antennas polarization
be VV. Figure. 7highlights also the deviation of th,

if detectors (5) and (6) are used. In this studgure. 8
shows also the best approximation of g, values
within the use of Bayesian decision rule given bi)(

Ideal
—HB— GM-CFAR
—%— OS-CFAR1
—+— OS-CFAR2
—6— Bayesian-CFAR

15 20 25
SCR (dB)

30 35

Figure. 2Py versus SCR of CFAR algorithms in Pareto typeuttelr
with N = 32,k=3N/4, Pea= 10%, a0 = 2.724%and S =a —1.
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Figure. 3Pp versus SCR of CFAR algorithms in Pareto typeutter

and 2 interfering targets witlcR = 5dB,N = 16,k=3N/4,
Pea=10°a = 2.724%and B =a - 1.
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Figure. 4Pp versus SCR of CFAR algorithms in Pareto typeutter
and 2 interfering targets witlcR = 10dB,N = 16,k=3N/4,

Pra= 1080 =2.724kand S =a 1.

Figure. 5Pga versus scale factaf of CFAR algorithms using IPIX
data for HH polarization and = 32

(a) logt-CFAR (log-normal or Weibull clutter case)
(b) zlogz-CFAR (Weibull clutter case)
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---e-=- HH, 15m
0.5 —emeee= HH, 30m
1
15
2
25
‘ ‘
10 5 0 5 10 15 20
r(dB)

Figure. 6Pea versus detection threshold@ of Bayesian-CFAR
detector (Pareto type Il clutter case)
using IPIX data for HH polarization amdi= 32
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Figure. 7Pga versus scale factdf of CFAR algorithms using IPIX
data for VV polarization anl = 32
(a) logt-CFAR (log-normal or Weibull clutter case)
(b) zlogz-CFAR (Weibull clutter case)

Figure. 9Pg4 versus scale factdf of zlogz-CFAR algorithm for a
resolution of 3m , HH and VV polarization.
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Figure. 8Pga versus detection thresholl of Bayesian-CFAR detector
(Pareto type Il clutter case)
using IPIX data for VV polarization arid= 32

Figure. 10Pg4 versus scale factaf of logt-CFAR algorithm for a
resolution of 3m , HH and VV polarization.

For HH and VV polarizations and a range resolution
of 3m, the CFAR properties of zlogz-CFAR and logt- 0.8}
CFAR detectors are also checked as showrigares. 9
and 10. In this case, a data matrix of samples 10000x33
is used to estimate thg,in terms of7 . It is remarkable 0.6
in these results that thH&-, curves are not converged at  ° os}
Pea = 10° This implies that such data does not fit

precisely the Weibull or the lognormal disturbance. o

In order to depict thé®p values, the mean of the scale 0.3

factor of each detector is obtained to be 35dB for 0.2}

the case of zlogz-CFAR algorithm and=10for the ol —>— Logt-CFAR | |

case of logt-CFAR algorithm. As shown figure. 11 = " i 20gz)} CFAR

the logt-CFAR provides the bed?, results if HH 5 10 15 20 25 20 35
polarization and a resolution of 3m are considered. SCR (dB)

When the VV polarization and a resolution of 3m are

taken into account as shownFhigure. 12 thePp values Figure. 11Pp versus SCR of zlogz-CFAR and logt-CFAR algorithms
are almost overlapped. In this study, the logt-CFAR using real data withlH polarization and 3m

detector is preferred than the zloz-CFAR detector.
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Figure. 12P versus SCR of zlogz-CFAR and logt-CFAR algorithms  Figure. 14P; versus SCR of B-CFAR algorith using real data witth
using real data witW'V polarization and 3m andVV polarizations and resolution of 3m
For the case of a square law detector,Rhevalues
related to the Bayesian-CFAR algorithm are computed V.C
for HH and VV polarizations and a resolution of 3in. - CONCLUSIONS
noticed in Figure. 13 that the Pga cugrves are In this work, we analyzed and compared the
approximated, but the fitting error Bga = 10° remains  performance of non-parametric CFAR detectors in
remarkable. The scale factor in this case is18dB. presence of log-normal, Weibull and Pareto type Il

Figure. l4sketchs thép in terms of the SCR using both clutter. From simulated data, the Bayesian-CFAR
HH and VV polarizations data with a resolution @fi.3  detector provided a full CFAR property and offetbd
The two curves have natures of monotonic increasingsmallest detection probability values, since theo tw
functions, but for the VV polarization case dat@ th parameters are unknown which make errors for the
Bayesian-CFAR  detector has better detection estimation of the clutter power. In terms of diffet
performances. range resolutions of IPIX real data, CFAR properté¢
zlogz-CFAR, logt-CFAR and Bayesian-CFAR detectors
are studied almost the same false alarm probaisiliti
were obtained using the Bayesian-CFAR detector for
different resolutions 3m, 15m and 30m (envelop cete

is used) and for a resolution of 3m (square lavectet

is used). It was also shown that logt-CFAR and (Zpg
CFAR algorithms can not ensure the CFAR property at
the desired false alarm probability if the rangdl ce
resolution is changed.

3m, HH
3m, VV
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