
 
 

 
 
Abstract—In radar systems, detection performance 

depends on assumed target and clutter statistical 
distributions. The probability of detection is shown to be 
sensitive to the degree of estimation accuracy of clutter 
levels. In this work, the performances of non-coherent logt-
CFAR, zlog(z)-CFAR and Bayesian-CFAR detectors are 
investigated using both simulated and real data. Three 
clutter disturbances are considered named log-normal, 
Weibull and Pareto type II. Based on simulated data, 
existing CFAR algorithms provide fully CFAR decision 
rules. From IPIX real data, the dependence of the false 
alarm probability associated to each detector is studied. 
With different range resolutions, it is shown that the 
Bayesian-CFAR algorithm exhibits a small deviation of the 
false alarm probability. 
 

Index Terms—Radar, Sea-clutter, logt-CFAR, zlog(z)-
CFAR, Pareto type II model, Bayesian-CFAR. 

 
 
 

I. INTRODUCTION  

The detection performance of maritime radars is 
restricted by the unwanted sea-echo or clutter [1]. Radar 
clutter modeling is a serious research issue in the field of 
targets detection and track applications. Although the 
number of these target-like data is small, they may cause 
false alarm and perturb the target detection. Reliable 
radar signal processing algorithms including CFAR 
(constant false alarm rate) detectors are constructed on 
the basis of the best selection of background clutter 
model [2]. Development of radar systems encourages 
researchers to use theoretical heavy tailed probability 
density functions (pdf) that are found in the open 
literature of statistics and mathematics. Nowadays, the 
Rayleigh distribution becomes a special case of some sea 
reverberation data, because there is a restriction of the 
application of a central limit theorem.  
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The two parameters log-normal, Weibull, K and 
Pareto laws have been offered as models for the 
amplitude of both land and sea-clutter [2-4]. More 
recently, compound distribution with trimodal discrete 
texture law has been added to yield a fairly good 
description of empirical data [5]. Adaptive CFAR 
detectors are developed to overcome the increase of the 
false alarm number due to the use of conventional 
detectors with fixed thresholds. Moreover, if wrong 
clutter model or inappropriate clutter level estimator is 
used, such false alarm problem can not be resolved [6]. 
In reality, the phenomenon complexity of radiation 
scattered from turbulent or rough surface and the lack of 
explicit solutions of underling algorithms have also a 
negative impact on the development of optimal CFAR 
detectors. 

In terms of sea-clutter model type, several authors 
have considered different decision rules that are 
independent of true clutter parameters [7-9]. From [3], 
the logt-CFAR maintains the CFAR property if 
independent radar returns follow log-normal or Weibull 
population. Recently, Gouri et al proposed in [7] the 
zlog(z)-CFAR detector for Weibull background. This 
procedure provides similar results with respect to the 
well known ML-CFAR algorithm given in [4], but with a 
small computation time. Some CFAR detectors 
operating in homogeneous and heterogeneous Pareto 
type II clutter are presented when the shape parameter or 
the scale parameter of the Pareto type II model is known 
a priori [8]. If these parameters are unknown, an 
alternative procedure based upon the Bayesian approach 
is introduced in which a modified decision rule is 
obtained in integral form [9].   

In summary, we observe that the previous work 
based on the Bayesian framework did not show 
performances comparisons between the Bayesian-CFAR 
detector with their corresponding logt-CFAR and 
zlog(z)-CFAR detectors using real data. In this work, the 
clutter is assumed to be log-normal, Weibull or Pareto 
type II distributed. The dependence of the false alarm 
probability is presented. From simulated data, CFAR 
detectors provide fully CFAR decision rules. From IPIX 
(Intelligent Pixel processing X-band) real data with 
different range resolutions, it is shown that the Bayesian-
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CFAR algorithm exhibits a small deviation of the false 
alarm probability. 

The paper is organized as follows. Section 2 
summarizes three statistical distributions characterizing 
radar sea echoes. In Section 3, full CFAR detectors 
related to the log-normal, Weibull and Pareto type II 
distributions are given. After giving partial CFAR 
detectors in Pareto type II clutter in Section 4, detection 
performances of underling CFAR algorithms are then 
compared. Finally, main conclusions are outlined in 
Section 5. 

 

II. SEA-CLUTTER MODELS 

In modern high resolution radar, the clutter (sea-
clutter, weather clutter or land clutter) returns may not 
follow the Rayleigh model, since the amplitude 
distribution develops a “larger” tail that may increase the 
false alarm rate. As an alternative, compound Gaussian 
distributions have been studied to fit sea radar clutter [7]. 
In the following, three popular distributions that are 
considered for maritime targets CFAR detection are 
presented.  
 
A. Log-normal model  

The log-normal distribution best describes land 
clutter at low grazing angles. It also fits sea-clutter in the 
plateau region [3, 10]. The pdf of the amplitude X is 
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where µ  and σ are the median and the standard 

deviation of the random variable ln(x) respectively. 
 
B. Weibull model 

The Weibull pdf is used to model sea-clutter at low 
grazing angles (less than five degrees) for propagation 
frequencies vary between 1 and 10GHz. It is determined 
by the slope parameter a and a median scatter 
coefficient 0σ , and is given by [4, 10]. 
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where c=1/a is the shape parameter and cb /1

0σ= is the 

scale parameter.  

 
C. Pareto type II model  

The Pareto disturbance is considered as a possible model 
to analyze data sets with very heavy tail, such as sea-
clutter measurements that have heavy tail. The Pareto 
type II pdf is obtained if the texture component follows 
the inverse gamma law [8, 9]. The latter describes the 
variations of the local reflected power due to the tilting 

of the illuminated area. The statistics of a Pareto 
distributed random variable x have been described in [8] 
by the probability density function as 
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where α  is the shape parameter and β  the scale 

parameter. For high resolution sea clutters, the shape 
parameter α  is typically in the range 2.1 ≤ α  ≤ ∞, 
where α close to 2.1 represents a very spiky clutter and 

∞→α corresponds to thermal noise (Rayleigh clutter). 
 

 

III. RELATED CFAR DETECTORS 

Radar target detection is usually modeled by binary 
hypothesis test. The observed signal y under the two 
hypotheses, H1 for target present and H0 for target absent 
(clutter only), is given by  
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where y, s and c are complex numbers.  
 
A. Logt-CFAR detector 

The decision rule associated to this detection procedure 
is independent of true values of the clutter model 
parameters and is suitable for log-normal or Weibull 
background [3]. The test is 

( ) στµ ˆˆlog
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where yX =0  is the magnitude of the cell under test 

(CUT), τ  is the threshold multiplier, µ̂ andσ̂  are the 

estimated mean and standard deviation of the random 
variable log(X). 
 
B. zlog(z)-CFAR detector 

The forthcoming adaptive threshold is also given as a 
function of estimated shape and scale parameters of 
Weibull clutter. The coefficient τ  is used to fix the 
desired value of the false alarm probability, PFA 

cbX ˆ/1
0

ˆτ=                                   (6) 

From [7], ĉ  and b̂ are obtained by a flexible approach 
based on the interpolation method 
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where N is the size of the CRP (clutter range profile) and 
( ).ψ  the Psi (digamma) function. 

 
 

C. Bayesian-CFAR detector 

The Bayesian method is one of the best techniques for 
obtaining decision rules with a CFAR property. This 
method provides the flexibility of extracting the 
posterior decision rule from its respective posterior 
distribution. It is considered here for the case in which 
both Pareto type II parameters in (3) are unknown. 
According to [9], the Bayesian based CFAR detector is 
constructed by means of steps below: 

 

Step 1: Calculate the natural logarithm of (3). 

Step 2: Determine the Fisher information matrix. 

Step 3: Calculate the Jeffreys prior distribution. 

Step 4: Obtain the joint density of the CRP. 

Step 5: Calculate the joint density of the Pareto 

distributional parameters, conditioned on the CRP. 

       Step 6: Calculate the Bayes predictive density. 

Step 7: Calculate the PFA expression as a function of 

the threshold τ and samples, Xi, i=1, …N. 

 
To compute the PFA, triple integrals are considered [9]. 
Hence 
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where ( )βα ,0zf  is the density of the CUT conditioned 

on the clutter parameters,( )N21  x., . . , x,, xf βα  is the 

posterior density of the parameters α  and 
β conditioned on the CRP and  ( )βα ,f  is the prior 

distributions of the clutter parameters. From [9], it is 
demonstrated that the PFA is independent of α  and β .  
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Consequently, one can conclude that the Bayesian test is 
to reject H0 if the following test statistic is negative [9]. 
From (9), τ  is replaced by X0 and he threshold is 
obtained numerically as 
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The decision rule can also be written in the form 
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IV. DETECTION COMPARISONS 

In this section, we conduct firstly several Monte-
Carlo simulations as well as IPIX real data in order to 
evaluate the detection performance and the false alarm 
properties of CFAR detectors given in [3, 4, 7-9]. For 
instance, the target of interest fluctuates according to 
Swerling 1 model. For comparison purposes, three 
partial CFAR detectors are considered for simulated data 
[8]. 
 
A. Partial GM-CFAR detector (knownβ ) 

Under the assumption of iid (independent and identically 
distributed) Pareto type II distributed samples, the 
decision rule of the GM-CFAR (geometric mean- 
CFAR) detector is given in terms of β  
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where 1/1 −= − N

FAPτ  and the corresponding PFA yields 

( ) N

FAP −+= τ1                              (13) 
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B. Partial OS-CFAR detector (knownβ ) 

In the presence of outliers, the output of the reference 
window are sorted in increasing order. The kth order 
statistic X(k) is chosen to estimate the clutter power. From 
[8], one concludes that the resulting OS-CFAR (order 
statistic-CFAR) detector is also dependent of β  














−








+

<
>

11 )(

0

1

0

τ

β
β k

H

H

X
X                         (14) 

Here, the equivalent PFA formula is 
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Where τ is computed numerically. 

 

C. Partial OS-CFAR detector (knownα ) 

In this case, the decision rule for known α is given by 
[8] 
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where τ is determined via numerical inversion of PFA [8]  
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D. Ideal detector (knownα andβ  ) 

In order to provide an upper bound on detector 
performance, a linear detector with fixed threshold is 
considered 
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E. Detection using simulated data 

In this subsection, simulated Pareto type II clutter is 
considered to examine CFAR detectors given by (12), 
(14), (16) and (18). To do this, N+1 samples are 
generated by means of the following Matlab function. 
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In the forthcoming outcomes, detectors (14) and (16) are 
denoted by OS-CFAR1 and OS-CFAR2 respectively. 
Figure. 1 depicts PD values against the SCR (signal-to-
clutter ratio) for N = 16, k=3N/4, 2.7241=α and 

1−= αβ . As expected, the Bayesian-CFAR detector 

exhibits the lowest detection performance, because the 
two parameters are unknown which provide an error for 
clutter level estimates. If N = 32, the performances of all 
detectors are increased and the Bayesian-CFAR detector 
has always minimum PD values as shown in Figure. 2. 
To illustrate the performance comparisons against 
interfering targets situation, we insert in leading and 
lagging windows two secondary targets with ICR = 5dB 
(Interfering-to-clutter ratio) for N = 16 as presented in 
Figure. 3. The degradation of GM-CFAR and Bayesian-
CFAR detectors is remarkable. If two strong interfering 
targets with ICR = 10dB are injected in the CRP which 
creates non-homogeneous clutter, the Bayesian-CFAR 
detector offers also worst results as shown in Figure. 4. 
These attenuations in PD values are due to the estimation 
errors of the clutter power in the CUT from non-
identically distributed samples. 
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Figure. 1 PD versus SCR of CFAR algorithms in Pareto type II clutter 

with N = 16, k=3N/4, PFA = 10-3, 2.7241=α and 1−= αβ . 
 
 
 
 
 
 

F. Detection using real data 

The IPIX real data is now used to illustrate the PFA 
values in terms of the threshold scale factor, range 
resolutions and antennas polarizations. IPIX is 
experimental X-band search radar, capable of dual 
polarized and frequency agile operation. We focus our 
analysis on the datasets 84, 85 and 86 which correspond 
to the range resolutions 30m, 15m and 3m respectively. 
Characteristic features of the IPIX radar are given in 
[11]. In this part, the magnitude (envelop) of real data is 
used as the input of each detector.  

For cases of HH polarization, range resolutions of 
3m, 15m and 30m with a linear detector, Figure. 5 
presents three curves of PFA values against the scale 
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factor, τ . Here, thresholds given by (5) and (6) are used. 
Clearly, the CFAR property is not maintained in terms of 
range resolutions. This implies that log-normal and 
Weibull distributions have not the ability to fit IPIX data 
for different range resolutions. If the Bayesian-CFAR is 
applied to these scenarios of the data, resulting PFA 
values are comparable as depicted in Figure. 6. Thus, 
one concludes that the Pareto type II is well suited for 
IPIX data. Now we change the antennas polarization to 
be VV. Figure. 7 highlights also the deviation of the PFA 
if detectors (5) and (6) are used. In this study, Figure. 8 
shows also the best approximation of the PFA values 
within the use of Bayesian decision rule given by (11).   
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Figure. 2 PD versus SCR of CFAR algorithms in Pareto type II clutter 

with N = 32, k = 3N/4, PFA = 10-3, 2.7241=α and 1−= αβ . 
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Figure. 3 PD versus SCR of CFAR algorithms in Pareto type II clutter 

and 2 interfering targets with ICR = 5dB, N = 16, k=3N/4,  
PFA = 10-3, 2.7241=α and 1−= αβ . 
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Figure. 4 PD versus SCR of CFAR algorithms in Pareto type II clutter 

and 2 interfering targets with ICR = 10dB, N = 16, k=3N/4,  
PFA = 10-3, 2.7241=α and 1−= αβ . 
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Figure. 5 PFA  versus scale factor τ of  CFAR algorithms using IPIX 

data for HH polarization and N = 32 
 

(a) logt-CFAR (log-normal or Weibull clutter case) 
(b) zlogz-CFAR (Weibull clutter case) 
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Figure. 6 PFA  versus detection threshold  τ of  Bayesian-CFAR 

detector (Pareto type II clutter case)  
using IPIX data for HH polarization and N = 32  
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Figure. 7 PFA  versus scale factor τ of  CFAR algorithms using IPIX 

data for VV polarization and N = 32 
(a) logt-CFAR (log-normal or Weibull clutter case) 

(b) zlogz-CFAR (Weibull clutter case) 
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Figure. 8 PFA versus detection threshold τ of Bayesian-CFAR detector 

(Pareto type II clutter case)  
using IPIX data for VV polarization and N = 32 

 
 
 
 

For HH and VV polarizations and a range resolution 
of 3m, the CFAR properties of zlogz-CFAR and logt-
CFAR detectors are also checked as shown in Figures. 9 
and 10. In this case, a data matrix of samples 10000x33 
is used to estimate the PFA in terms of τ . It is remarkable 
in these results that the PFA curves are not converged at 
PFA = 10-3. This implies that such data does not fit 
precisely the Weibull or the lognormal disturbance.  
In order to depict the PD values, the mean of the scale 
factor of each detector is obtained to be 5.3=τ dB for 
the case of zlogz-CFAR algorithm and 10=τ for the 
case of logt-CFAR algorithm. As shown in Figure. 11, 
the logt-CFAR provides the best PD results if HH 
polarization and a resolution of 3m are considered. 
When the VV polarization and a resolution of 3m are 
taken into account as shown in Figure. 12, the PD values 
are almost overlapped. In this study, the logt-CFAR 
detector is preferred than the zloz-CFAR detector. 
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Figure. 9 PFA  versus scale factor τ of  zlogz-CFAR algorithm for a 

resolution of 3m , HH and VV polarization. 
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Figure. 10 PFA  versus scale factor τ of  logt-CFAR algorithm for a 
resolution of 3m , HH and VV polarization. 
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Figure. 11 PD versus SCR of zlogz-CFAR and logt-CFAR algorithms 
using real data with HH polarization and 3m 
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Figure. 12 PD versus SCR of zlogz-CFAR and logt-CFAR algorithms 

using real data with VV polarization and 3m 
 
 
 
For the case of a square law detector, the PFA values 

related to the Bayesian-CFAR algorithm are computed 
for HH and VV polarizations and a resolution of 3m. It 
noticed in Figure. 13 that the PFA curves are 
approximated, but the fitting error at PFA = 10-3 remains 
remarkable. The  scale factor in this case is 18=τ dB. 
Figure. 14 sketchs the PD in terms of the SCR using both 
HH and VV polarizations data with a resolution of 3m. 
The two curves have natures of monotonic increasing 
functions, but for the VV polarization case data the 
Bayesian-CFAR detector has better detection 
performances.  
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Figure. 13 PFA  versus scale factor τ B-CFAR algorithm for a 
resolution of 3m , HH and VV polarization. 
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Figure. 14 PD versus SCR of B-CFAR algorith using real data with HH 

and VV polarizations and resolution of 3m 
 

 

 

V. CONCLUSIONS 

In this work, we analyzed and compared the 
performance of non-parametric CFAR detectors in 
presence of log-normal, Weibull and Pareto type II 
clutter. From simulated data, the Bayesian-CFAR 
detector provided a full CFAR property and offered the 
smallest detection probability values, since the two 
parameters are unknown which make errors for the 
estimation of the clutter power. In terms of different 
range resolutions of IPIX real data, CFAR properties of 
zlogz-CFAR, logt-CFAR and Bayesian-CFAR detectors 
are studied almost the same false alarm probabilities 
were obtained using the Bayesian-CFAR detector for 
different resolutions 3m, 15m and 30m (envelop detector 
is used) and for a resolution of 3m (square law detector 
is used). It was also shown that logt-CFAR and zlog(z) 
CFAR algorithms can not ensure the CFAR property at 
the desired false alarm probability if the range cell 
resolution is changed. 
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